1No. 13, Lane 158, Sec. 1, Daxiang St. Chung-Li, Taiwan 320 Republic of China 2Department of Applied Mathematics National Dong Hwa University Hua-Lien, Taiwan 974 Republic of China
Studia Mathematica, Tome 211 (2012) no. 3, pp. 231-240
We study Calderón–Zygmund operators acting on generalized Carleson measure spaces ${\rm CMO}^{\alpha ,q}_r$ and show a necessary and sufficient condition for their boundedness. The spaces ${\rm CMO}^{\alpha ,q}_r$ are a generalization of ${\rm BMO}$, and can be regarded as the duals of homogeneous Triebel–Lizorkin spaces as well.
1
No. 13, Lane 158, Sec. 1, Daxiang St. Chung-Li, Taiwan 320 Republic of China
2
Department of Applied Mathematics National Dong Hwa University Hua-Lien, Taiwan 974 Republic of China
@article{10_4064_sm211_3_4,
author = {Chin-Cheng Lin and Kunchuan Wang},
title = {Calder\'on{\textendash}Zygmund operators acting on generalized {Carleson} measure spaces},
journal = {Studia Mathematica},
pages = {231--240},
year = {2012},
volume = {211},
number = {3},
doi = {10.4064/sm211-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm211-3-4/}
}
TY - JOUR
AU - Chin-Cheng Lin
AU - Kunchuan Wang
TI - Calderón–Zygmund operators acting on generalized Carleson measure spaces
JO - Studia Mathematica
PY - 2012
SP - 231
EP - 240
VL - 211
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm211-3-4/
DO - 10.4064/sm211-3-4
LA - en
ID - 10_4064_sm211_3_4
ER -
%0 Journal Article
%A Chin-Cheng Lin
%A Kunchuan Wang
%T Calderón–Zygmund operators acting on generalized Carleson measure spaces
%J Studia Mathematica
%D 2012
%P 231-240
%V 211
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm211-3-4/
%R 10.4064/sm211-3-4
%G en
%F 10_4064_sm211_3_4
Chin-Cheng Lin; Kunchuan Wang. Calderón–Zygmund operators acting on generalized Carleson measure spaces. Studia Mathematica, Tome 211 (2012) no. 3, pp. 231-240. doi: 10.4064/sm211-3-4