$\mathcal{U}$-filters and uniform compactification
Studia Mathematica, Tome 211 (2012) no. 3, pp. 215-229

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that the uniform compactification of a uniform space $(X,\mathcal{U})$ can be considered as a space of filters on $X$. We apply these filters to study the $\mathcal{LUC}$-compactification of a topological group.
DOI : 10.4064/sm211-3-3
Keywords: uniform compactification uniform space mathcal considered space filters apply these filters study mathcal luc compactification topological group

Tomi Alaste 1

1 University of Oulu, PL 3000 Department of Mathematical Sciences FI-90014 Oulun yliopisto, Finland
@article{10_4064_sm211_3_3,
     author = {Tomi Alaste},
     title = {$\mathcal{U}$-filters and uniform compactification},
     journal = {Studia Mathematica},
     pages = {215--229},
     publisher = {mathdoc},
     volume = {211},
     number = {3},
     year = {2012},
     doi = {10.4064/sm211-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm211-3-3/}
}
TY  - JOUR
AU  - Tomi Alaste
TI  - $\mathcal{U}$-filters and uniform compactification
JO  - Studia Mathematica
PY  - 2012
SP  - 215
EP  - 229
VL  - 211
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm211-3-3/
DO  - 10.4064/sm211-3-3
LA  - en
ID  - 10_4064_sm211_3_3
ER  - 
%0 Journal Article
%A Tomi Alaste
%T $\mathcal{U}$-filters and uniform compactification
%J Studia Mathematica
%D 2012
%P 215-229
%V 211
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm211-3-3/
%R 10.4064/sm211-3-3
%G en
%F 10_4064_sm211_3_3
Tomi Alaste. $\mathcal{U}$-filters and uniform compactification. Studia Mathematica, Tome 211 (2012) no. 3, pp. 215-229. doi: 10.4064/sm211-3-3

Cité par Sources :