Conditions equivalent to $C^{*}$ independence
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 211 (2012) no. 3, pp. 191-197
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let $\mathcal{A}$ and $\mathcal{B}$ be mutually commuting unital $C^{*}$ 
subalgebras of $\mathcal{B}(\mathcal{H})$. 
It is shown that $\mathcal{A}$ and $\mathcal{B}$ are $C^{*}$ independent
if and only if for all natural numbers $n, m$, for all $n$-tuples $A=(A_1, \ldots, A_n)$ of doubly commuting nonzero operators of
$\mathcal{A}$ and $m$-tuples $B=(B_1, \ldots, B_m)$ of doubly commuting nonzero operators of $\mathcal{B}$,
$$
\mathrm{Sp}(A, B)= \mathrm{Sp}(A) \times \mathrm{Sp}(B),
$$
where $\mathrm{Sp}$ denotes the joint Taylor spectrum.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
mathcal mathcal mutually commuting unital * subalgebras mathcal mathcal shown mathcal mathcal * independent only natural numbers n tuples ldots doubly commuting nonzero operators mathcal m tuples ldots doubly commuting nonzero operators mathcal mathrm mathrm times mathrm where mathrm denotes joint taylor spectrum
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Shuilin Jin 1 ; Li Xu 2 ; Qinghua Jiang 3 ; Li Li 4
@article{10_4064_sm211_3_1,
     author = {Shuilin Jin and Li Xu and Qinghua Jiang and Li Li},
     title = {Conditions equivalent to $C^{*}$ independence},
     journal = {Studia Mathematica},
     pages = {191--197},
     publisher = {mathdoc},
     volume = {211},
     number = {3},
     year = {2012},
     doi = {10.4064/sm211-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm211-3-1/}
}
                      
                      
                    TY  - JOUR
AU  - Shuilin Jin
AU  - Li Xu
AU  - Qinghua Jiang
AU  - Li Li
TI  - Conditions equivalent to $C^{*}$ independence
JO  - Studia Mathematica
PY  - 2012
SP  - 191
EP  - 197
VL  - 211
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm211-3-1/
DO  - 10.4064/sm211-3-1
LA  - en
ID  - 10_4064_sm211_3_1
ER  - 
                      
                      
                    Shuilin Jin; Li Xu; Qinghua Jiang; Li Li. Conditions equivalent to $C^{*}$ independence. Studia Mathematica, Tome 211 (2012) no. 3, pp. 191-197. doi: 10.4064/sm211-3-1
                  
                Cité par Sources :