1Department of Mathematics Harbin Institute of Technology Harbin, China 150001 2College of Computer Science and Technology Harbin Engineering University Harbin, China 150001 3Academy of Fundamental and Interdisciplinary Sciences Harbin Institute of Technology Harbin, China 150001 4Natural Science Research Center Harbin Institute of Technology Harbin, China 150001
Studia Mathematica, Tome 211 (2012) no. 3, pp. 191-197
Let $\mathcal{A}$ and $\mathcal{B}$ be mutually commuting unital $C^{*}$
subalgebras of $\mathcal{B}(\mathcal{H})$.
It is shown that $\mathcal{A}$ and $\mathcal{B}$ are $C^{*}$ independent
if and only if for all natural numbers $n, m$, for all $n$-tuples $A=(A_1, \ldots, A_n)$ of doubly commuting nonzero operators of
$\mathcal{A}$ and $m$-tuples $B=(B_1, \ldots, B_m)$ of doubly commuting nonzero operators of $\mathcal{B}$,
$$
\mathrm{Sp}(A, B)= \mathrm{Sp}(A) \times \mathrm{Sp}(B),
$$
where $\mathrm{Sp}$ denotes the joint Taylor spectrum.
Keywords:
mathcal mathcal mutually commuting unital * subalgebras mathcal mathcal shown mathcal mathcal * independent only natural numbers n tuples ldots doubly commuting nonzero operators mathcal m tuples ldots doubly commuting nonzero operators mathcal mathrm mathrm times mathrm where mathrm denotes joint taylor spectrum
Affiliations des auteurs :
Shuilin Jin 
1
;
Li Xu 
2
;
Qinghua Jiang 
3
;
Li Li 
4
1
Department of Mathematics Harbin Institute of Technology Harbin, China 150001
2
College of Computer Science and Technology Harbin Engineering University Harbin, China 150001
3
Academy of Fundamental and Interdisciplinary Sciences Harbin Institute of Technology Harbin, China 150001
4
Natural Science Research Center Harbin Institute of Technology Harbin, China 150001
@article{10_4064_sm211_3_1,
author = {Shuilin Jin and Li Xu and Qinghua Jiang and Li Li},
title = {Conditions equivalent to $C^{*}$ independence},
journal = {Studia Mathematica},
pages = {191--197},
year = {2012},
volume = {211},
number = {3},
doi = {10.4064/sm211-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm211-3-1/}
}
TY - JOUR
AU - Shuilin Jin
AU - Li Xu
AU - Qinghua Jiang
AU - Li Li
TI - Conditions equivalent to $C^{*}$ independence
JO - Studia Mathematica
PY - 2012
SP - 191
EP - 197
VL - 211
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm211-3-1/
DO - 10.4064/sm211-3-1
LA - en
ID - 10_4064_sm211_3_1
ER -
%0 Journal Article
%A Shuilin Jin
%A Li Xu
%A Qinghua Jiang
%A Li Li
%T Conditions equivalent to $C^{*}$ independence
%J Studia Mathematica
%D 2012
%P 191-197
%V 211
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm211-3-1/
%R 10.4064/sm211-3-1
%G en
%F 10_4064_sm211_3_1
Shuilin Jin; Li Xu; Qinghua Jiang; Li Li. Conditions equivalent to $C^{*}$ independence. Studia Mathematica, Tome 211 (2012) no. 3, pp. 191-197. doi: 10.4064/sm211-3-1