Weighted bounds for variational Fourier series
Studia Mathematica, Tome 211 (2012) no. 2, pp. 153-190

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For $1 p \infty $ and for weight $w$ in $A_p$, we show that the $r$-variation of the Fourier sums of any function $f$ in $L^p(w)$ is finite a.e. for $r$ larger than a finite constant depending on $w$ and $p$. The fact that the variation exponent depends on $w$ is necessary. This strengthens previous work of Hunt–Young and is a weighted extension of a variational Carleson theorem of Oberlin–Seeger–Tao–Thiele–Wright. The proof uses weighted adaptation of phase plane analysis and a weighted extension of a variational inequality of Lépingle.
DOI : 10.4064/sm211-2-4
Keywords: infty weight r variation fourier sums function finite larger finite constant depending the variation exponent depends necessary strengthens previous work hunt young weighted extension variational carleson theorem oberlin seeger tao thiele wright proof uses weighted adaptation phase plane analysis weighted extension variational inequality pingle

Yen Do 1 ; Michael Lacey 2

1 Department of Mathematics Yale University New Haven, CT 06511, U.S.A.
2 School of Mathematics Georgia Institute of Technology Atlanta, GA 30332, U.S.A.
@article{10_4064_sm211_2_4,
     author = {Yen Do and Michael Lacey},
     title = {Weighted bounds for variational {Fourier} series},
     journal = {Studia Mathematica},
     pages = {153--190},
     publisher = {mathdoc},
     volume = {211},
     number = {2},
     year = {2012},
     doi = {10.4064/sm211-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm211-2-4/}
}
TY  - JOUR
AU  - Yen Do
AU  - Michael Lacey
TI  - Weighted bounds for variational Fourier series
JO  - Studia Mathematica
PY  - 2012
SP  - 153
EP  - 190
VL  - 211
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm211-2-4/
DO  - 10.4064/sm211-2-4
LA  - en
ID  - 10_4064_sm211_2_4
ER  - 
%0 Journal Article
%A Yen Do
%A Michael Lacey
%T Weighted bounds for variational Fourier series
%J Studia Mathematica
%D 2012
%P 153-190
%V 211
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm211-2-4/
%R 10.4064/sm211-2-4
%G en
%F 10_4064_sm211_2_4
Yen Do; Michael Lacey. Weighted bounds for variational Fourier series. Studia Mathematica, Tome 211 (2012) no. 2, pp. 153-190. doi: 10.4064/sm211-2-4

Cité par Sources :