Another fixed point theorem for nonexpansive potential operators
Studia Mathematica, Tome 211 (2012) no. 2, pp. 147-151

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove the following result: Let $X$ be a real Hilbert space and let $J:X\to \mathbb{R}$ be a $C^1$ functional with a nonexpansive derivative. Then, for each $r>0$, the following alternative holds: either $J'$ has a fixed point with norm less than $r$, or $$ \sup_{\|x\|=r}J(x)=\sup_{\|u\|_{L^2([0,1],X)}=r} \,\int_0^1J(u(t))\,dt. $$
DOI : 10.4064/sm211-2-3
Keywords: prove following result real hilbert space mathbb functional nonexpansive derivative each following alternative holds either has fixed point norm nbsp sup sup int

Biagio Ricceri 1

1 Department of Mathematics University of Catania Viale A. Doria 6 95125 Catania, Italy
@article{10_4064_sm211_2_3,
     author = {Biagio Ricceri},
     title = {Another fixed point theorem for nonexpansive potential operators},
     journal = {Studia Mathematica},
     pages = {147--151},
     publisher = {mathdoc},
     volume = {211},
     number = {2},
     year = {2012},
     doi = {10.4064/sm211-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm211-2-3/}
}
TY  - JOUR
AU  - Biagio Ricceri
TI  - Another fixed point theorem for nonexpansive potential operators
JO  - Studia Mathematica
PY  - 2012
SP  - 147
EP  - 151
VL  - 211
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm211-2-3/
DO  - 10.4064/sm211-2-3
LA  - en
ID  - 10_4064_sm211_2_3
ER  - 
%0 Journal Article
%A Biagio Ricceri
%T Another fixed point theorem for nonexpansive potential operators
%J Studia Mathematica
%D 2012
%P 147-151
%V 211
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm211-2-3/
%R 10.4064/sm211-2-3
%G en
%F 10_4064_sm211_2_3
Biagio Ricceri. Another fixed point theorem for nonexpansive potential operators. Studia Mathematica, Tome 211 (2012) no. 2, pp. 147-151. doi: 10.4064/sm211-2-3

Cité par Sources :