Another fixed point theorem for nonexpansive potential operators
Studia Mathematica, Tome 211 (2012) no. 2, pp. 147-151
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove the following result:
Let $X$ be a real Hilbert space and let $J:X\to \mathbb{R}$ be a $C^1$
functional with a nonexpansive derivative. Then, for each $r>0$, the following
alternative holds: either $J'$ has a fixed point with norm less than $r$, or
$$
\sup_{\|x\|=r}J(x)=\sup_{\|u\|_{L^2([0,1],X)}=r} \,\int_0^1J(u(t))\,dt.
$$
Keywords:
prove following result real hilbert space mathbb functional nonexpansive derivative each following alternative holds either has fixed point norm nbsp sup sup int
Affiliations des auteurs :
Biagio Ricceri 1
@article{10_4064_sm211_2_3,
author = {Biagio Ricceri},
title = {Another fixed point theorem for nonexpansive potential operators},
journal = {Studia Mathematica},
pages = {147--151},
publisher = {mathdoc},
volume = {211},
number = {2},
year = {2012},
doi = {10.4064/sm211-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm211-2-3/}
}
Biagio Ricceri. Another fixed point theorem for nonexpansive potential operators. Studia Mathematica, Tome 211 (2012) no. 2, pp. 147-151. doi: 10.4064/sm211-2-3
Cité par Sources :