Module maps over locally compact quantum groups
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 211 (2012) no. 2, pp. 111-145
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We study locally compact quantum groups $\mathbb{G}$ and their 
module maps
through a general Banach algebra approach. As applications, we
obtain various characterizations of compactness and discreteness,
which in particular generalize a result by Lau (1978) and recover
another one by Runde (2008). Properties of module maps on $L_\infty(\mathbb{G})$
are used to characterize strong Arens irregularity of $L_1(\mathbb{G})$
and are linked to commutation relations over $\mathbb{G}$ with several
double commutant theorems established. We prove the quantum group version of the theorems by Young (1973),
Lau (1981), and Forrest (1991) regarding Arens regularity of
the group algebra $L_1(G)$ and the Fourier algebra $A(G)$. We extend the classical Eberlein theorem on the inclusion $B(G) \subseteq \mathit{WAP} (G)$ to all locally compact quantum groups.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
study locally compact quantum groups mathbb their module maps through general banach algebra approach applications obtain various characterizations compactness discreteness which particular generalize result lau recover another runde properties module maps infty mathbb characterize strong arens irregularity mathbb linked commutation relations mathbb several double commutant theorems established prove quantum group version theorems young lau forrest regarding arens regularity group algebra fourier algebra extend classical eberlein theorem inclusion subseteq mathit wap locally compact quantum groups
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Zhiguo Hu 1 ; Matthias Neufang 2 ; Zhong-Jin Ruan 3
@article{10_4064_sm211_2_2,
     author = {Zhiguo Hu and Matthias Neufang and Zhong-Jin Ruan},
     title = {Module maps over locally compact quantum groups},
     journal = {Studia Mathematica},
     pages = {111--145},
     publisher = {mathdoc},
     volume = {211},
     number = {2},
     year = {2012},
     doi = {10.4064/sm211-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm211-2-2/}
}
                      
                      
                    TY - JOUR AU - Zhiguo Hu AU - Matthias Neufang AU - Zhong-Jin Ruan TI - Module maps over locally compact quantum groups JO - Studia Mathematica PY - 2012 SP - 111 EP - 145 VL - 211 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm211-2-2/ DO - 10.4064/sm211-2-2 LA - en ID - 10_4064_sm211_2_2 ER -
Zhiguo Hu; Matthias Neufang; Zhong-Jin Ruan. Module maps over locally compact quantum groups. Studia Mathematica, Tome 211 (2012) no. 2, pp. 111-145. doi: 10.4064/sm211-2-2
Cité par Sources :