It is a basic fact in infinite-dimensional Lie theory that the unit group $A^\times $ of a continuous inverse algebra $A$ is a Lie group. We describe criteria ensuring that the Lie group $A^\times $ is regular in Milnor's sense. Notably, $A^\times $ is regular if $A$ is Mackey-complete and locally m-convex.
Keywords:
basic infinite dimensional lie theory unit group times continuous inverse algebra lie group describe criteria ensuring lie group times regular milnors sense notably times regular mackey complete locally m convex
@article{10_4064_sm211_2_1,
author = {Helge Gl\"ockner and Karl-Hermann Neeb},
title = {When unit groups of continuous inverse algebras
are regular {Lie} groups},
journal = {Studia Mathematica},
pages = {95--109},
year = {2012},
volume = {211},
number = {2},
doi = {10.4064/sm211-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm211-2-1/}
}
TY - JOUR
AU - Helge Glöckner
AU - Karl-Hermann Neeb
TI - When unit groups of continuous inverse algebras
are regular Lie groups
JO - Studia Mathematica
PY - 2012
SP - 95
EP - 109
VL - 211
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm211-2-1/
DO - 10.4064/sm211-2-1
LA - en
ID - 10_4064_sm211_2_1
ER -
%0 Journal Article
%A Helge Glöckner
%A Karl-Hermann Neeb
%T When unit groups of continuous inverse algebras
are regular Lie groups
%J Studia Mathematica
%D 2012
%P 95-109
%V 211
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm211-2-1/
%R 10.4064/sm211-2-1
%G en
%F 10_4064_sm211_2_1
Helge Glöckner; Karl-Hermann Neeb. When unit groups of continuous inverse algebras
are regular Lie groups. Studia Mathematica, Tome 211 (2012) no. 2, pp. 95-109. doi: 10.4064/sm211-2-1