Let $M_1$ and $M_2$ be N-functions. We establish some combinatorial inequalities and show that the product spaces $\ell ^n_{M_1}(\ell _{M_2}^{n})$ are uniformly isomorphic to subspaces of $L_1$ if $M_1$ and $M_2$ are “separated” by a function $t^{r}$, $1 r 2$.
@article{10_4064_sm211_1_2,
author = {Joscha Prochno and Carsten Sch\"utt},
title = {Combinatorial inequalities and subspaces of $L_1$},
journal = {Studia Mathematica},
pages = {21--39},
year = {2012},
volume = {211},
number = {1},
doi = {10.4064/sm211-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm211-1-2/}
}
TY - JOUR
AU - Joscha Prochno
AU - Carsten Schütt
TI - Combinatorial inequalities and subspaces of $L_1$
JO - Studia Mathematica
PY - 2012
SP - 21
EP - 39
VL - 211
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm211-1-2/
DO - 10.4064/sm211-1-2
LA - en
ID - 10_4064_sm211_1_2
ER -
%0 Journal Article
%A Joscha Prochno
%A Carsten Schütt
%T Combinatorial inequalities and subspaces of $L_1$
%J Studia Mathematica
%D 2012
%P 21-39
%V 211
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm211-1-2/
%R 10.4064/sm211-1-2
%G en
%F 10_4064_sm211_1_2
Joscha Prochno; Carsten Schütt. Combinatorial inequalities and subspaces of $L_1$. Studia Mathematica, Tome 211 (2012) no. 1, pp. 21-39. doi: 10.4064/sm211-1-2