Combinatorial inequalities and subspaces of $L_1$
Studia Mathematica, Tome 211 (2012) no. 1, pp. 21-39
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $M_1$ and $M_2$ be N-functions. We establish some combinatorial inequalities and show that the product spaces $\ell ^n_{M_1}(\ell _{M_2}^{n})$ are uniformly isomorphic to subspaces of $L_1$ if $M_1$ and $M_2$ are “separated” by a function $t^{r}$, $1 r 2$.
Keywords:
n functions establish combinatorial inequalities product spaces ell ell uniformly isomorphic subspaces separated function
Affiliations des auteurs :
Joscha Prochno 1 ; Carsten Schütt 1
@article{10_4064_sm211_1_2,
author = {Joscha Prochno and Carsten Sch\"utt},
title = {Combinatorial inequalities and subspaces of $L_1$},
journal = {Studia Mathematica},
pages = {21--39},
publisher = {mathdoc},
volume = {211},
number = {1},
year = {2012},
doi = {10.4064/sm211-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm211-1-2/}
}
TY - JOUR AU - Joscha Prochno AU - Carsten Schütt TI - Combinatorial inequalities and subspaces of $L_1$ JO - Studia Mathematica PY - 2012 SP - 21 EP - 39 VL - 211 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm211-1-2/ DO - 10.4064/sm211-1-2 LA - en ID - 10_4064_sm211_1_2 ER -
Joscha Prochno; Carsten Schütt. Combinatorial inequalities and subspaces of $L_1$. Studia Mathematica, Tome 211 (2012) no. 1, pp. 21-39. doi: 10.4064/sm211-1-2
Cité par Sources :