Combinatorial inequalities and subspaces of $L_1$
Studia Mathematica, Tome 211 (2012) no. 1, pp. 21-39

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $M_1$ and $M_2$ be N-functions. We establish some combinatorial inequalities and show that the product spaces $\ell ^n_{M_1}(\ell _{M_2}^{n})$ are uniformly isomorphic to subspaces of $L_1$ if $M_1$ and $M_2$ are “separated” by a function $t^{r}$, $1 r 2$.
DOI : 10.4064/sm211-1-2
Keywords: n functions establish combinatorial inequalities product spaces ell ell uniformly isomorphic subspaces separated function

Joscha Prochno 1 ; Carsten Schütt 1

1 Mathematisches Seminar Christian-Albrechts-Universität zu Kiel 24098 Kiel, Germany
@article{10_4064_sm211_1_2,
     author = {Joscha Prochno and Carsten Sch\"utt},
     title = {Combinatorial inequalities and subspaces of $L_1$},
     journal = {Studia Mathematica},
     pages = {21--39},
     publisher = {mathdoc},
     volume = {211},
     number = {1},
     year = {2012},
     doi = {10.4064/sm211-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm211-1-2/}
}
TY  - JOUR
AU  - Joscha Prochno
AU  - Carsten Schütt
TI  - Combinatorial inequalities and subspaces of $L_1$
JO  - Studia Mathematica
PY  - 2012
SP  - 21
EP  - 39
VL  - 211
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm211-1-2/
DO  - 10.4064/sm211-1-2
LA  - en
ID  - 10_4064_sm211_1_2
ER  - 
%0 Journal Article
%A Joscha Prochno
%A Carsten Schütt
%T Combinatorial inequalities and subspaces of $L_1$
%J Studia Mathematica
%D 2012
%P 21-39
%V 211
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm211-1-2/
%R 10.4064/sm211-1-2
%G en
%F 10_4064_sm211_1_2
Joscha Prochno; Carsten Schütt. Combinatorial inequalities and subspaces of $L_1$. Studia Mathematica, Tome 211 (2012) no. 1, pp. 21-39. doi: 10.4064/sm211-1-2

Cité par Sources :