Quantification of the reciprocal Dunford–Pettis property
Studia Mathematica, Tome 210 (2012) no. 3, pp. 261-278
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove in particular that Banach spaces of the form $C_0(\varOmega )$, where $\varOmega $ is a locally compact space, enjoy a quantitative version of the reciprocal Dunford–Pettis property.
Keywords:
prove particular banach spaces form varomega where varomega locally compact space enjoy quantitative version reciprocal dunford pettis property
Affiliations des auteurs :
Ondřej F. K. Kalenda 1 ; Jiří Spurný 1
@article{10_4064_sm210_3_6,
author = {Ond\v{r}ej F. K. Kalenda and Ji\v{r}{\'\i} Spurn\'y},
title = {Quantification of the reciprocal {Dunford{\textendash}Pettis} property},
journal = {Studia Mathematica},
pages = {261--278},
publisher = {mathdoc},
volume = {210},
number = {3},
year = {2012},
doi = {10.4064/sm210-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm210-3-6/}
}
TY - JOUR AU - Ondřej F. K. Kalenda AU - Jiří Spurný TI - Quantification of the reciprocal Dunford–Pettis property JO - Studia Mathematica PY - 2012 SP - 261 EP - 278 VL - 210 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm210-3-6/ DO - 10.4064/sm210-3-6 LA - en ID - 10_4064_sm210_3_6 ER -
Ondřej F. K. Kalenda; Jiří Spurný. Quantification of the reciprocal Dunford–Pettis property. Studia Mathematica, Tome 210 (2012) no. 3, pp. 261-278. doi: 10.4064/sm210-3-6
Cité par Sources :