Dual spaces of compact operator spaces and
the weak Radon–Nikodým property
Studia Mathematica, Tome 210 (2012) no. 3, pp. 247-260
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We deal with the weak Radon–Nikodým property in connection with the dual space of $\mathcal{K}(X,Y)$,
the space of compact operators from a Banach space $X$ to a Banach space $Y$. First, under the weak
Radon–Nikodým property, we give a
representation of that dual. Next, using this representation, we provide some applications to the dual spaces of $\mathcal{K}(X,Y)$ and $\mathcal{K}_{w^{*}w}(X^{*},Y)$, the space of weak$^{*}$-weakly continuous operators.
Keywords:
weak radon nikod property connection dual space mathcal space compact operators banach space banach space first under weak radon nikod property representation dual using representation provide applications dual spaces mathcal mathcal * * space weak * weakly continuous operators
Affiliations des auteurs :
Keun Young Lee  1
@article{10_4064_sm210_3_5,
author = {Keun Young Lee},
title = {Dual spaces of compact operator spaces and
the weak {Radon{\textendash}Nikod\'ym} property},
journal = {Studia Mathematica},
pages = {247--260},
year = {2012},
volume = {210},
number = {3},
doi = {10.4064/sm210-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm210-3-5/}
}
Keun Young Lee. Dual spaces of compact operator spaces and the weak Radon–Nikodým property. Studia Mathematica, Tome 210 (2012) no. 3, pp. 247-260. doi: 10.4064/sm210-3-5
Cité par Sources :