1Department of Pure Mathematics Center of Excellence in Analysis on Algebraic Structures (CEAAS) Ferdowsi University of Mashhad P.O. Box 1159, Mashhad 91775, Iran 2Department of Mathematics Shahrood University of Technology P.O. Box 3619995161-316, Shahrood, Iran and School of Mathematics Institute for Research in Fundamental Sciences (IPM) P.O. Box 19395-5746, Tehran, Iran 3Department of Mathematics Ferdowsi University of Mashhad P.O. Box 1159, Mashhad, Iran 4Tusi Mathematical Research Group P.O. Box 1113, Mashhad, Iran
Studia Mathematica, Tome 210 (2012) no. 2, pp. 189-196
Let $t$ be a regular operator between Hilbert $C^*$-modules and
$t^\dagger$ be its Moore–Penrose inverse. We investigate the
Moore–Penrose invertibility of the Gram operator $t^*t$. More
precisely, we study some conditions ensuring that $t^{ \dagger}
= (t^* t)^{ \dagger} t^*= t^*(t t^*)^{ \dagger}$
and $(t^*t)^{\dagger}=t^{ \dagger}t^{* \dagger}$. As an application, we get some
results for densely defined closed operators on Hilbert
$C^*$-modules over $C^*$-algebras of compact operators.
Keywords:
regular operator between hilbert * modules dagger its moore penrose inverse investigate moore penrose invertibility gram operator *t precisely study conditions ensuring dagger * dagger * * * dagger *t dagger dagger * dagger application get results densely defined closed operators hilbert * modules * algebras compact operators
Affiliations des auteurs :
M. S. Moslehian 
1
;
K. Sharif 
2
;
M. Forough 
3
;
M. Chakoshi 
4
1
Department of Pure Mathematics Center of Excellence in Analysis on Algebraic Structures (CEAAS) Ferdowsi University of Mashhad P.O. Box 1159, Mashhad 91775, Iran
2
Department of Mathematics Shahrood University of Technology P.O. Box 3619995161-316, Shahrood, Iran and School of Mathematics Institute for Research in Fundamental Sciences (IPM) P.O. Box 19395-5746, Tehran, Iran
3
Department of Mathematics Ferdowsi University of Mashhad P.O. Box 1159, Mashhad, Iran
4
Tusi Mathematical Research Group P.O. Box 1113, Mashhad, Iran
@article{10_4064_sm210_2_6,
author = {M. S. Moslehian and K. Sharif and M. Forough and M. Chakoshi},
title = {Moore{\textendash}Penrose inverses of {Gram} operators on {Hilbert} $C^*$-modules},
journal = {Studia Mathematica},
pages = {189--196},
year = {2012},
volume = {210},
number = {2},
doi = {10.4064/sm210-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm210-2-6/}
}
TY - JOUR
AU - M. S. Moslehian
AU - K. Sharif
AU - M. Forough
AU - M. Chakoshi
TI - Moore–Penrose inverses of Gram operators on Hilbert $C^*$-modules
JO - Studia Mathematica
PY - 2012
SP - 189
EP - 196
VL - 210
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm210-2-6/
DO - 10.4064/sm210-2-6
LA - en
ID - 10_4064_sm210_2_6
ER -
%0 Journal Article
%A M. S. Moslehian
%A K. Sharif
%A M. Forough
%A M. Chakoshi
%T Moore–Penrose inverses of Gram operators on Hilbert $C^*$-modules
%J Studia Mathematica
%D 2012
%P 189-196
%V 210
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm210-2-6/
%R 10.4064/sm210-2-6
%G en
%F 10_4064_sm210_2_6
M. S. Moslehian; K. Sharif; M. Forough; M. Chakoshi. Moore–Penrose inverses of Gram operators on Hilbert $C^*$-modules. Studia Mathematica, Tome 210 (2012) no. 2, pp. 189-196. doi: 10.4064/sm210-2-6