1A. Razmadze Mathematical Institute I. Javakhishvili Tbilisi State University 2, University St. 0186 Tbilisi, Georgia 2A. Razmadze Mathematical Institute I. Javakhishvili Tbilisi State University 2, University St. 0186 Tbilisi, Georgia and Department of Mathematics Faculty of Informatics and Control Systems Georgian Technical University 77, Kostava St. 0175 Tbilisi, Georgia
Studia Mathematica, Tome 210 (2012) no. 2, pp. 159-176
rning the boundedness for fractional maximal and potential
operators defined on quasi-metric measure spaces from $L^{p),
\theta} (X, \mu)$ to $L^{q), q\theta/p}(X, \nu)$ (trace
inequality), where $1 p q \infty$, $\theta> 0$ and $\mu$ satisfies
the doubling condition in $X$. The results are new even for
Euclidean spaces. For example, from our general results D. Adams-type
necessary and sufficient conditions guaranteeing the trace
inequality for fractional maximal functions and potentials defined
on so-called $s$-sets in ${\mathbb{R}}^n$ follow. Trace
inequalities for one-sided potentials, strong fractional maximal
functions and potentials with product kernels, fractional maximal
functions and potentials defined on the half-space are also
proved in terms of Adams-type criteria. Finally, we remark
that a Fefferman–Stein-type inequality for Hardy–Littlewood
maximal functions and Calderón–Zygmund singular integrals
holds in grand Lebesgue spaces.
Keywords:
rning boundedness fractional maximal potential operators defined quasi metric measure spaces theta theta trace inequality where infty theta satisfies doubling condition results even euclidean spaces example general results adams type necessary sufficient conditions guaranteeing trace inequality fractional maximal functions potentials defined so called s sets mathbb follow trace inequalities one sided potentials strong fractional maximal functions potentials product kernels fractional maximal functions potentials defined half space proved terms adams type criteria finally remark fefferman stein type inequality hardy littlewood maximal functions calder zygmund singular integrals holds grand lebesgue spaces
Affiliations des auteurs :
Vakhtang Kokilashvili 
1
;
Alexander Meskhi 
2
1
A. Razmadze Mathematical Institute I. Javakhishvili Tbilisi State University 2, University St. 0186 Tbilisi, Georgia
2
A. Razmadze Mathematical Institute I. Javakhishvili Tbilisi State University 2, University St. 0186 Tbilisi, Georgia and Department of Mathematics Faculty of Informatics and Control Systems Georgian Technical University 77, Kostava St. 0175 Tbilisi, Georgia
@article{10_4064_sm210_2_4,
author = {Vakhtang Kokilashvili and Alexander Meskhi},
title = {Trace inequalities for fractional integrals
in grand {Lebesgue} spaces},
journal = {Studia Mathematica},
pages = {159--176},
year = {2012},
volume = {210},
number = {2},
doi = {10.4064/sm210-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm210-2-4/}
}
TY - JOUR
AU - Vakhtang Kokilashvili
AU - Alexander Meskhi
TI - Trace inequalities for fractional integrals
in grand Lebesgue spaces
JO - Studia Mathematica
PY - 2012
SP - 159
EP - 176
VL - 210
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm210-2-4/
DO - 10.4064/sm210-2-4
LA - en
ID - 10_4064_sm210_2_4
ER -
%0 Journal Article
%A Vakhtang Kokilashvili
%A Alexander Meskhi
%T Trace inequalities for fractional integrals
in grand Lebesgue spaces
%J Studia Mathematica
%D 2012
%P 159-176
%V 210
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm210-2-4/
%R 10.4064/sm210-2-4
%G en
%F 10_4064_sm210_2_4
Vakhtang Kokilashvili; Alexander Meskhi. Trace inequalities for fractional integrals
in grand Lebesgue spaces. Studia Mathematica, Tome 210 (2012) no. 2, pp. 159-176. doi: 10.4064/sm210-2-4