Trace inequalities for fractional integrals
in grand Lebesgue spaces
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 210 (2012) no. 2, pp. 159-176
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              rning the boundedness for fractional maximal and potential
operators defined on quasi-metric measure spaces from $L^{p),
\theta} (X, \mu)$ to $L^{q), q\theta/p}(X, \nu)$ (trace
inequality), where $1 p q \infty$, $\theta> 0$ and $\mu$ satisfies
the doubling condition in $X$. The results are new even for
Euclidean spaces. For example, from our general results D. Adams-type
necessary and sufficient conditions guaranteeing the trace
inequality for fractional maximal functions and potentials defined
on so-called $s$-sets in ${\mathbb{R}}^n$ follow. Trace
inequalities for one-sided potentials, strong fractional maximal
functions and potentials with product kernels, fractional maximal
functions and potentials defined on the half-space are also
proved in terms of Adams-type criteria. Finally, we remark
that a Fefferman–Stein-type inequality for Hardy–Littlewood
maximal functions and Calderón–Zygmund singular integrals
holds in grand Lebesgue spaces.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
rning boundedness fractional maximal potential operators defined quasi metric measure spaces theta theta trace inequality where infty theta satisfies doubling condition results even euclidean spaces example general results adams type necessary sufficient conditions guaranteeing trace inequality fractional maximal functions potentials defined so called s sets mathbb follow trace inequalities one sided potentials strong fractional maximal functions potentials product kernels fractional maximal functions potentials defined half space proved terms adams type criteria finally remark fefferman stein type inequality hardy littlewood maximal functions calder zygmund singular integrals holds grand lebesgue spaces
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Vakhtang Kokilashvili 1 ; Alexander Meskhi 2
@article{10_4064_sm210_2_4,
     author = {Vakhtang Kokilashvili and Alexander Meskhi},
     title = {Trace inequalities for fractional integrals
in grand {Lebesgue} spaces},
     journal = {Studia Mathematica},
     pages = {159--176},
     publisher = {mathdoc},
     volume = {210},
     number = {2},
     year = {2012},
     doi = {10.4064/sm210-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm210-2-4/}
}
                      
                      
                    TY - JOUR AU - Vakhtang Kokilashvili AU - Alexander Meskhi TI - Trace inequalities for fractional integrals in grand Lebesgue spaces JO - Studia Mathematica PY - 2012 SP - 159 EP - 176 VL - 210 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm210-2-4/ DO - 10.4064/sm210-2-4 LA - en ID - 10_4064_sm210_2_4 ER -
%0 Journal Article %A Vakhtang Kokilashvili %A Alexander Meskhi %T Trace inequalities for fractional integrals in grand Lebesgue spaces %J Studia Mathematica %D 2012 %P 159-176 %V 210 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm210-2-4/ %R 10.4064/sm210-2-4 %G en %F 10_4064_sm210_2_4
Vakhtang Kokilashvili; Alexander Meskhi. Trace inequalities for fractional integrals in grand Lebesgue spaces. Studia Mathematica, Tome 210 (2012) no. 2, pp. 159-176. doi: 10.4064/sm210-2-4
Cité par Sources :