Beurling–Figà-Talamanca–Herz algebras
Studia Mathematica, Tome 210 (2012) no. 2, pp. 117-135
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For a locally compact group
$G$ and $p \in (1,\infty)$, we define and study the
Beurling–Figà-Talamanca–Herz algebras $A_p(G,\omega)$. For
$p=2$ and abelian $G$, these are precisely the Beurling algebras
on the dual group $\hat{G}$. For $p =2$ and compact $G$, our
approach subsumes an earlier one by H. H. Lee and E. Samei. The
key to our approach is not to define Beurling algebras through
weights, i.e., possibly unbounded continuous functions, but rather
through their inverses, which are bounded continuous functions. We
prove that a locally compact group $G$ is amenable if and only if
one—and, equivalently, every—Beurling–Figà-Talamanca–Herz
algebra $A_p(G,\omega)$ has a bounded approximate identity.
Mots-clés :
locally compact group infty define study beurling fig talamanca herz algebras omega abelian these precisely beurling algebras dual group hat compact approach subsumes earlier lee samei key approach define beurling algebras through weights possibly unbounded continuous functions rather through their inverses which bounded continuous functions prove locally compact group amenable only equivalently every beurling fig talamanca herz algebra omega has bounded approximate identity
Affiliations des auteurs :
Serap Öztop 1 ; Volker Runde 2 ; Nico Spronk 3
@article{10_4064_sm210_2_2,
author = {Serap \"Oztop and Volker Runde and Nico Spronk},
title = {Beurling{\textendash}Fig\`a-Talamanca{\textendash}Herz algebras},
journal = {Studia Mathematica},
pages = {117--135},
publisher = {mathdoc},
volume = {210},
number = {2},
year = {2012},
doi = {10.4064/sm210-2-2},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm210-2-2/}
}
TY - JOUR AU - Serap Öztop AU - Volker Runde AU - Nico Spronk TI - Beurling–Figà-Talamanca–Herz algebras JO - Studia Mathematica PY - 2012 SP - 117 EP - 135 VL - 210 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm210-2-2/ DO - 10.4064/sm210-2-2 LA - de ID - 10_4064_sm210_2_2 ER -
Serap Öztop; Volker Runde; Nico Spronk. Beurling–Figà-Talamanca–Herz algebras. Studia Mathematica, Tome 210 (2012) no. 2, pp. 117-135. doi: 10.4064/sm210-2-2
Cité par Sources :