Beurling–Figà-Talamanca–Herz algebras
Studia Mathematica, Tome 210 (2012) no. 2, pp. 117-135

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a locally compact group $G$ and $p \in (1,\infty)$, we define and study the Beurling–Figà-Talamanca–Herz algebras $A_p(G,\omega)$. For $p=2$ and abelian $G$, these are precisely the Beurling algebras on the dual group $\hat{G}$. For $p =2$ and compact $G$, our approach subsumes an earlier one by H. H. Lee and E. Samei. The key to our approach is not to define Beurling algebras through weights, i.e., possibly unbounded continuous functions, but rather through their inverses, which are bounded continuous functions. We prove that a locally compact group $G$ is amenable if and only if one—and, equivalently, every—Beurling–Figà-Talamanca–Herz algebra $A_p(G,\omega)$ has a bounded approximate identity.
DOI : 10.4064/sm210-2-2
Mots-clés : locally compact group infty define study beurling fig talamanca herz algebras omega abelian these precisely beurling algebras dual group hat compact approach subsumes earlier lee samei key approach define beurling algebras through weights possibly unbounded continuous functions rather through their inverses which bounded continuous functions prove locally compact group amenable only equivalently every beurling fig talamanca herz algebra omega has bounded approximate identity

Serap Öztop 1 ; Volker Runde 2 ; Nico Spronk 3

1 Department of Mathematics Faculty of Science Istanbul University Istanbul, Turkey
2 Department of Mathematical and Statistical Sciences University of Alberta Edmonton, AB, Canada T6G 2G1
3 Department of Pure Mathematics University of Waterloo Waterloo, ON, Canada N2L 3G1
@article{10_4064_sm210_2_2,
     author = {Serap \"Oztop and Volker Runde and Nico Spronk},
     title = {Beurling{\textendash}Fig\`a-Talamanca{\textendash}Herz algebras},
     journal = {Studia Mathematica},
     pages = {117--135},
     publisher = {mathdoc},
     volume = {210},
     number = {2},
     year = {2012},
     doi = {10.4064/sm210-2-2},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm210-2-2/}
}
TY  - JOUR
AU  - Serap Öztop
AU  - Volker Runde
AU  - Nico Spronk
TI  - Beurling–Figà-Talamanca–Herz algebras
JO  - Studia Mathematica
PY  - 2012
SP  - 117
EP  - 135
VL  - 210
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm210-2-2/
DO  - 10.4064/sm210-2-2
LA  - de
ID  - 10_4064_sm210_2_2
ER  - 
%0 Journal Article
%A Serap Öztop
%A Volker Runde
%A Nico Spronk
%T Beurling–Figà-Talamanca–Herz algebras
%J Studia Mathematica
%D 2012
%P 117-135
%V 210
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm210-2-2/
%R 10.4064/sm210-2-2
%G de
%F 10_4064_sm210_2_2
Serap Öztop; Volker Runde; Nico Spronk. Beurling–Figà-Talamanca–Herz algebras. Studia Mathematica, Tome 210 (2012) no. 2, pp. 117-135. doi: 10.4064/sm210-2-2

Cité par Sources :