Copies of $\ell _{\infty }$ in the space of Pettis integrable functions with integrals of finite variation
Studia Mathematica, Tome 210 (2012) no. 1, pp. 93-98
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $ ( \varOmega ,\varSigma ,\mu ) $ be a complete finite measure space and $X$ a Banach space. We show that the space of all weakly $\mu $-measurable (classes of scalarly equivalent) $X$-valued Pettis integrable functions with integrals of finite variation, equipped with the variation norm, contains a copy of $\ell _{\infty }$ if and only if $X$ does.
Keywords:
varomega varsigma complete finite measure space banach space space weakly measurable classes scalarly equivalent x valued pettis integrable functions integrals finite variation equipped variation norm contains copy ell infty only does
Affiliations des auteurs :
Juan Carlos Ferrando  1
@article{10_4064_sm210_1_6,
author = {Juan Carlos Ferrando},
title = {Copies of $\ell _{\infty }$ in the space of {Pettis} integrable functions with integrals of finite variation},
journal = {Studia Mathematica},
pages = {93--98},
year = {2012},
volume = {210},
number = {1},
doi = {10.4064/sm210-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm210-1-6/}
}
TY - JOUR
AU - Juan Carlos Ferrando
TI - Copies of $\ell _{\infty }$ in the space of Pettis integrable functions with integrals of finite variation
JO - Studia Mathematica
PY - 2012
SP - 93
EP - 98
VL - 210
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm210-1-6/
DO - 10.4064/sm210-1-6
LA - en
ID - 10_4064_sm210_1_6
ER -
%0 Journal Article
%A Juan Carlos Ferrando
%T Copies of $\ell _{\infty }$ in the space of Pettis integrable functions with integrals of finite variation
%J Studia Mathematica
%D 2012
%P 93-98
%V 210
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm210-1-6/
%R 10.4064/sm210-1-6
%G en
%F 10_4064_sm210_1_6
Juan Carlos Ferrando. Copies of $\ell _{\infty }$ in the space of Pettis integrable functions with integrals of finite variation. Studia Mathematica, Tome 210 (2012) no. 1, pp. 93-98. doi: 10.4064/sm210-1-6
Cité par Sources :