Copies of $\ell _{\infty }$ in the space of Pettis integrable functions with integrals of finite variation
Studia Mathematica, Tome 210 (2012) no. 1, pp. 93-98 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $ ( \varOmega ,\varSigma ,\mu ) $ be a complete finite measure space and $X$ a Banach space. We show that the space of all weakly $\mu $-measurable (classes of scalarly equivalent) $X$-valued Pettis integrable functions with integrals of finite variation, equipped with the variation norm, contains a copy of $\ell _{\infty }$ if and only if $X$ does.
DOI : 10.4064/sm210-1-6
Keywords: varomega varsigma complete finite measure space banach space space weakly measurable classes scalarly equivalent x valued pettis integrable functions integrals finite variation equipped variation norm contains copy ell infty only does

Juan Carlos Ferrando  1

1 Centro de Investigación Operativa Universidad Miguel Hernández Edificio Torretamarit, Avda de la Universidad s/n E-03202 Elche (Alicante), Spain
@article{10_4064_sm210_1_6,
     author = {Juan Carlos Ferrando},
     title = {Copies of $\ell _{\infty }$ in the space of {Pettis} integrable functions with integrals of finite variation},
     journal = {Studia Mathematica},
     pages = {93--98},
     year = {2012},
     volume = {210},
     number = {1},
     doi = {10.4064/sm210-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm210-1-6/}
}
TY  - JOUR
AU  - Juan Carlos Ferrando
TI  - Copies of $\ell _{\infty }$ in the space of Pettis integrable functions with integrals of finite variation
JO  - Studia Mathematica
PY  - 2012
SP  - 93
EP  - 98
VL  - 210
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm210-1-6/
DO  - 10.4064/sm210-1-6
LA  - en
ID  - 10_4064_sm210_1_6
ER  - 
%0 Journal Article
%A Juan Carlos Ferrando
%T Copies of $\ell _{\infty }$ in the space of Pettis integrable functions with integrals of finite variation
%J Studia Mathematica
%D 2012
%P 93-98
%V 210
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm210-1-6/
%R 10.4064/sm210-1-6
%G en
%F 10_4064_sm210_1_6
Juan Carlos Ferrando. Copies of $\ell _{\infty }$ in the space of Pettis integrable functions with integrals of finite variation. Studia Mathematica, Tome 210 (2012) no. 1, pp. 93-98. doi: 10.4064/sm210-1-6

Cité par Sources :