A remark on the div-curl lemma
Studia Mathematica, Tome 210 (2012) no. 1, pp. 77-92

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove the div-curl lemma for a general class of function spaces, stable under the action of Calderón–Zygmund operators. The proof is based on a variant of the renormalization of the product introduced by S. Dobyinsky, and on the use of divergence-free wavelet bases.
DOI : 10.4064/sm210-1-5
Keywords: prove div curl lemma general class function spaces stable under action calder zygmund operators proof based variant renormalization product introduced dobyinsky divergence free wavelet bases

Pierre Gilles Lemarié-Rieusset 1

1 Laboratoire Analyse et Probabilités Université d'Évry Val d'Essonne IBGBI, 23 Bd. de France 91037 Évry Cedex, France
@article{10_4064_sm210_1_5,
     author = {Pierre Gilles Lemari\'e-Rieusset},
     title = {A remark on the div-curl lemma},
     journal = {Studia Mathematica},
     pages = {77--92},
     publisher = {mathdoc},
     volume = {210},
     number = {1},
     year = {2012},
     doi = {10.4064/sm210-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm210-1-5/}
}
TY  - JOUR
AU  - Pierre Gilles Lemarié-Rieusset
TI  - A remark on the div-curl lemma
JO  - Studia Mathematica
PY  - 2012
SP  - 77
EP  - 92
VL  - 210
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm210-1-5/
DO  - 10.4064/sm210-1-5
LA  - en
ID  - 10_4064_sm210_1_5
ER  - 
%0 Journal Article
%A Pierre Gilles Lemarié-Rieusset
%T A remark on the div-curl lemma
%J Studia Mathematica
%D 2012
%P 77-92
%V 210
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm210-1-5/
%R 10.4064/sm210-1-5
%G en
%F 10_4064_sm210_1_5
Pierre Gilles Lemarié-Rieusset. A remark on the div-curl lemma. Studia Mathematica, Tome 210 (2012) no. 1, pp. 77-92. doi: 10.4064/sm210-1-5

Cité par Sources :