A remark on the div-curl lemma
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 210 (2012) no. 1, pp. 77-92
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We prove the div-curl lemma for a general class of function spaces, stable under the action of Calderón–Zygmund operators. The proof is based on a variant of the renormalization of the product introduced by S. Dobyinsky, and on the use of divergence-free wavelet bases.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
prove div curl lemma general class function spaces stable under action calder zygmund operators proof based variant renormalization product introduced dobyinsky divergence free wavelet bases
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Pierre Gilles Lemarié-Rieusset 1
@article{10_4064_sm210_1_5,
     author = {Pierre Gilles Lemari\'e-Rieusset},
     title = {A remark on the div-curl lemma},
     journal = {Studia Mathematica},
     pages = {77--92},
     publisher = {mathdoc},
     volume = {210},
     number = {1},
     year = {2012},
     doi = {10.4064/sm210-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm210-1-5/}
}
                      
                      
                    Pierre Gilles Lemarié-Rieusset. A remark on the div-curl lemma. Studia Mathematica, Tome 210 (2012) no. 1, pp. 77-92. doi: 10.4064/sm210-1-5
Cité par Sources :