1Instituto de Matemáticas Universidad Nacional Autónoma de México Ciudad Universitaria México D.F., 04510, México 2Maxwell Institute of Mathematical Sciences and the School of Mathematics University of Edinburgh JCMB, King's Buildings Mayfield Road Edinburgh EH9 3JZ, Scotland
Studia Mathematica, Tome 210 (2012) no. 1, pp. 57-76
We consider singular integral operators on ${\Bbb R}$
given by convolution with a principal value distribution
defined by integrating against oscillating kernels of the form
$e^{i R(x)}/x$ where $R(x) = P(x)/Q(x)$ is a general
rational function with real coefficients. We establish
weak-type $(1,1)$ bounds for such operators which
are uniform in the coefficients, depending
only on the degrees of $P$ and $Q$. It is not always the
case that these operators map the Hardy space $H^1({\Bbb R})$
to $L^1({\Bbb R})$ and we will characterise those rational
phases $R(x) = P(x)/Q(x)$ which do map $H^1$ to $L^1$
(and even $H^1$ to $H^1$).
Keywords:
consider singular integral operators bbb given convolution principal value distribution defined integrating against oscillating kernels form where general rational function real coefficients establish weak type bounds operators which uniform coefficients depending only degrees always these operators map hardy space bbb bbb characterise those rational phases which map even
Affiliations des auteurs :
Magali Folch-Gabayet 
1
;
James Wright 
2
1
Instituto de Matemáticas Universidad Nacional Autónoma de México Ciudad Universitaria México D.F., 04510, México
2
Maxwell Institute of Mathematical Sciences and the School of Mathematics University of Edinburgh JCMB, King's Buildings Mayfield Road Edinburgh EH9 3JZ, Scotland
@article{10_4064_sm210_1_4,
author = {Magali Folch-Gabayet and James Wright},
title = {Weak-type $(1,1)$
bounds for oscillatory singular integrals with rational phases},
journal = {Studia Mathematica},
pages = {57--76},
year = {2012},
volume = {210},
number = {1},
doi = {10.4064/sm210-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm210-1-4/}
}
TY - JOUR
AU - Magali Folch-Gabayet
AU - James Wright
TI - Weak-type $(1,1)$
bounds for oscillatory singular integrals with rational phases
JO - Studia Mathematica
PY - 2012
SP - 57
EP - 76
VL - 210
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm210-1-4/
DO - 10.4064/sm210-1-4
LA - en
ID - 10_4064_sm210_1_4
ER -
%0 Journal Article
%A Magali Folch-Gabayet
%A James Wright
%T Weak-type $(1,1)$
bounds for oscillatory singular integrals with rational phases
%J Studia Mathematica
%D 2012
%P 57-76
%V 210
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm210-1-4/
%R 10.4064/sm210-1-4
%G en
%F 10_4064_sm210_1_4
Magali Folch-Gabayet; James Wright. Weak-type $(1,1)$
bounds for oscillatory singular integrals with rational phases. Studia Mathematica, Tome 210 (2012) no. 1, pp. 57-76. doi: 10.4064/sm210-1-4