Weak-type $(1,1)$
bounds for oscillatory  singular integrals with rational phases
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 210 (2012) no. 1, pp. 57-76
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We consider singular integral operators on ${\Bbb R}$
given by convolution with a principal value distribution
defined by integrating against oscillating kernels of the form
$e^{i R(x)}/x$ where $R(x) = P(x)/Q(x)$ is a general
rational function with real coefficients. We establish
weak-type $(1,1)$ bounds for such operators which
are uniform in the coefficients, depending
only on the degrees of $P$ and $Q$. It is not always the
case that these operators map the Hardy space $H^1({\Bbb R})$
to $L^1({\Bbb R})$ and we will characterise those rational
phases $R(x) = P(x)/Q(x)$ which do map $H^1$ to $L^1$
(and even $H^1$ to $H^1$).
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
consider singular integral operators bbb given convolution principal value distribution defined integrating against oscillating kernels form where general rational function real coefficients establish weak type bounds operators which uniform coefficients depending only degrees always these operators map hardy space bbb bbb characterise those rational phases which map even
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Magali Folch-Gabayet 1 ; James Wright 2
@article{10_4064_sm210_1_4,
     author = {Magali Folch-Gabayet and James Wright},
     title = {Weak-type $(1,1)$
bounds for oscillatory  singular integrals with rational phases},
     journal = {Studia Mathematica},
     pages = {57--76},
     publisher = {mathdoc},
     volume = {210},
     number = {1},
     year = {2012},
     doi = {10.4064/sm210-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm210-1-4/}
}
                      
                      
                    TY - JOUR AU - Magali Folch-Gabayet AU - James Wright TI - Weak-type $(1,1)$ bounds for oscillatory singular integrals with rational phases JO - Studia Mathematica PY - 2012 SP - 57 EP - 76 VL - 210 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm210-1-4/ DO - 10.4064/sm210-1-4 LA - en ID - 10_4064_sm210_1_4 ER -
%0 Journal Article %A Magali Folch-Gabayet %A James Wright %T Weak-type $(1,1)$ bounds for oscillatory singular integrals with rational phases %J Studia Mathematica %D 2012 %P 57-76 %V 210 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm210-1-4/ %R 10.4064/sm210-1-4 %G en %F 10_4064_sm210_1_4
Magali Folch-Gabayet; James Wright. Weak-type $(1,1)$ bounds for oscillatory singular integrals with rational phases. Studia Mathematica, Tome 210 (2012) no. 1, pp. 57-76. doi: 10.4064/sm210-1-4
Cité par Sources :