Characterization of Jordan derivations on $\mathcal J$-subspace
lattice algebras
Studia Mathematica, Tome 210 (2012) no. 1, pp. 17-33
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $ \mathcal{L}$ be a $\mathcal{J}$-subspace lattice on a Banach
space $X$ and $\mathop{\rm Alg}\nolimits \mathcal{L}$ the associated
$\mathcal{J}$-subspace lattice algebra. Assume that $\delta:\mathop{\rm
Alg}\nolimits \mathcal{L}\rightarrow\mathop{\rm Alg}\nolimits \mathcal{L}$ is an additive
map. It is shown that $\delta$ satisfies
$\delta(AB+BA)=\delta(A)B+A\delta(B)+\delta(B)A+B\delta(A)$ for any
$A,B\in\mathop{\rm Alg}\nolimits \mathcal{L}$ with $AB+BA=0$ if and only if
$\delta(A)=\tau(A)+\delta(I)A$ for all $A$, where $\tau$ is an
additive derivation; if $X$ is complex with $\dim X\geq 3$ and if
$\delta$ is linear, then $\delta$ satisfies
$\delta(AB+BA)=\delta(A)B+A\delta(B)+\delta(B)A+B\delta(A)$ for any
$A,B\in\mathop{\rm Alg}\nolimits \mathcal{L}$ with $AB+BA=I$ if and only if $\delta$
is a derivation.
Keywords:
mathcal mathcal subspace lattice banach space mathop alg nolimits mathcal associated mathcal subspace lattice algebra assume delta mathop alg nolimits mathcal rightarrow mathop alg nolimits mathcal additive map shown delta satisfies delta delta delta delta delta mathop alg nolimits mathcal only delta tau delta where tau additive derivation complex dim geq delta linear delta satisfies delta delta delta delta delta mathop alg nolimits mathcal only delta derivation
Affiliations des auteurs :
Xiaofei Qi 1
@article{10_4064_sm210_1_2,
author = {Xiaofei Qi},
title = {Characterization of {Jordan} derivations on $\mathcal J$-subspace
lattice algebras},
journal = {Studia Mathematica},
pages = {17--33},
publisher = {mathdoc},
volume = {210},
number = {1},
year = {2012},
doi = {10.4064/sm210-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm210-1-2/}
}
TY - JOUR AU - Xiaofei Qi TI - Characterization of Jordan derivations on $\mathcal J$-subspace lattice algebras JO - Studia Mathematica PY - 2012 SP - 17 EP - 33 VL - 210 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm210-1-2/ DO - 10.4064/sm210-1-2 LA - en ID - 10_4064_sm210_1_2 ER -
Xiaofei Qi. Characterization of Jordan derivations on $\mathcal J$-subspace lattice algebras. Studia Mathematica, Tome 210 (2012) no. 1, pp. 17-33. doi: 10.4064/sm210-1-2
Cité par Sources :