Characterization of Jordan derivations on $\mathcal J$-subspace
lattice algebras
Studia Mathematica, Tome 210 (2012) no. 1, pp. 17-33
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $ \mathcal{L}$ be a $\mathcal{J}$-subspace lattice on a Banach
space $X$ and $\mathop{\rm Alg}\nolimits \mathcal{L}$ the associated
$\mathcal{J}$-subspace lattice algebra. Assume that $\delta:\mathop{\rm
Alg}\nolimits \mathcal{L}\rightarrow\mathop{\rm Alg}\nolimits \mathcal{L}$ is an additive
map. It is shown that $\delta$ satisfies
$\delta(AB+BA)=\delta(A)B+A\delta(B)+\delta(B)A+B\delta(A)$ for any
$A,B\in\mathop{\rm Alg}\nolimits \mathcal{L}$ with $AB+BA=0$ if and only if
$\delta(A)=\tau(A)+\delta(I)A$ for all $A$, where $\tau$ is an
additive derivation; if $X$ is complex with $\dim X\geq 3$ and if
$\delta$ is linear, then $\delta$ satisfies
$\delta(AB+BA)=\delta(A)B+A\delta(B)+\delta(B)A+B\delta(A)$ for any
$A,B\in\mathop{\rm Alg}\nolimits \mathcal{L}$ with $AB+BA=I$ if and only if $\delta$
is a derivation.
Keywords:
mathcal mathcal subspace lattice banach space mathop alg nolimits mathcal associated mathcal subspace lattice algebra assume delta mathop alg nolimits mathcal rightarrow mathop alg nolimits mathcal additive map shown delta satisfies delta delta delta delta delta mathop alg nolimits mathcal only delta tau delta where tau additive derivation complex dim geq delta linear delta satisfies delta delta delta delta delta mathop alg nolimits mathcal only delta derivation
Affiliations des auteurs :
Xiaofei Qi  1
@article{10_4064_sm210_1_2,
author = {Xiaofei Qi},
title = {Characterization of {Jordan} derivations on $\mathcal J$-subspace
lattice algebras},
journal = {Studia Mathematica},
pages = {17--33},
year = {2012},
volume = {210},
number = {1},
doi = {10.4064/sm210-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm210-1-2/}
}
Xiaofei Qi. Characterization of Jordan derivations on $\mathcal J$-subspace lattice algebras. Studia Mathematica, Tome 210 (2012) no. 1, pp. 17-33. doi: 10.4064/sm210-1-2
Cité par Sources :