Characterization of Jordan derivations on $\mathcal J$-subspace lattice algebras
Studia Mathematica, Tome 210 (2012) no. 1, pp. 17-33

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $ \mathcal{L}$ be a $\mathcal{J}$-subspace lattice on a Banach space $X$ and $\mathop{\rm Alg}\nolimits \mathcal{L}$ the associated $\mathcal{J}$-subspace lattice algebra. Assume that $\delta:\mathop{\rm Alg}\nolimits \mathcal{L}\rightarrow\mathop{\rm Alg}\nolimits \mathcal{L}$ is an additive map. It is shown that $\delta$ satisfies $\delta(AB+BA)=\delta(A)B+A\delta(B)+\delta(B)A+B\delta(A)$ for any $A,B\in\mathop{\rm Alg}\nolimits \mathcal{L}$ with $AB+BA=0$ if and only if $\delta(A)=\tau(A)+\delta(I)A$ for all $A$, where $\tau$ is an additive derivation; if $X$ is complex with $\dim X\geq 3$ and if $\delta$ is linear, then $\delta$ satisfies $\delta(AB+BA)=\delta(A)B+A\delta(B)+\delta(B)A+B\delta(A)$ for any $A,B\in\mathop{\rm Alg}\nolimits \mathcal{L}$ with $AB+BA=I$ if and only if $\delta$ is a derivation.
DOI : 10.4064/sm210-1-2
Keywords: mathcal mathcal subspace lattice banach space mathop alg nolimits mathcal associated mathcal subspace lattice algebra assume delta mathop alg nolimits mathcal rightarrow mathop alg nolimits mathcal additive map shown delta satisfies delta delta delta delta delta mathop alg nolimits mathcal only delta tau delta where tau additive derivation complex dim geq delta linear delta satisfies delta delta delta delta delta mathop alg nolimits mathcal only delta derivation

Xiaofei Qi 1

1 Department of Mathematics Shanxi University 030006 Taiyuan, P.R. China
@article{10_4064_sm210_1_2,
     author = {Xiaofei Qi},
     title = {Characterization of {Jordan} derivations on $\mathcal J$-subspace
lattice algebras},
     journal = {Studia Mathematica},
     pages = {17--33},
     publisher = {mathdoc},
     volume = {210},
     number = {1},
     year = {2012},
     doi = {10.4064/sm210-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm210-1-2/}
}
TY  - JOUR
AU  - Xiaofei Qi
TI  - Characterization of Jordan derivations on $\mathcal J$-subspace
lattice algebras
JO  - Studia Mathematica
PY  - 2012
SP  - 17
EP  - 33
VL  - 210
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm210-1-2/
DO  - 10.4064/sm210-1-2
LA  - en
ID  - 10_4064_sm210_1_2
ER  - 
%0 Journal Article
%A Xiaofei Qi
%T Characterization of Jordan derivations on $\mathcal J$-subspace
lattice algebras
%J Studia Mathematica
%D 2012
%P 17-33
%V 210
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm210-1-2/
%R 10.4064/sm210-1-2
%G en
%F 10_4064_sm210_1_2
Xiaofei Qi. Characterization of Jordan derivations on $\mathcal J$-subspace
lattice algebras. Studia Mathematica, Tome 210 (2012) no. 1, pp. 17-33. doi: 10.4064/sm210-1-2

Cité par Sources :