Smooth renormings of the Lebesgue–Bochner
function space $L^1(\mu ,X)$
Studia Mathematica, Tome 209 (2012) no. 3, pp. 247-265
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that, if $\mu$ is a probability measure and $X$ is a Banach
space, then the space $L^1(\mu,X)$ of Bochner integrable functions
admits an equivalent Gâteaux (or uniformly Gâteaux) smooth norm
provided that $X$ has such a norm, and that if $X$ admits an
equivalent Fréchet (resp. uniformly Fréchet) smooth norm, then
$L^1(\mu,X)$ has an equivalent renorming whose restriction to every
reflexive subspace is Fréchet (resp. uniformly Fréchet) smooth.
Keywords:
probability measure banach space space bochner integrable functions admits equivalent teaux uniformly teaux smooth norm provided has norm admits equivalent chet resp uniformly chet smooth norm has equivalent renorming whose restriction every reflexive subspace chet resp uniformly chet smooth
Affiliations des auteurs :
Marián Fabian 1 ; Sebastián Lajara 2
@article{10_4064_sm209_3_4,
author = {Mari\'an Fabian and Sebasti\'an Lajara},
title = {Smooth renormings of the {Lebesgue{\textendash}Bochner
} function space $L^1(\mu ,X)$},
journal = {Studia Mathematica},
pages = {247--265},
publisher = {mathdoc},
volume = {209},
number = {3},
year = {2012},
doi = {10.4064/sm209-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm209-3-4/}
}
TY - JOUR AU - Marián Fabian AU - Sebastián Lajara TI - Smooth renormings of the Lebesgue–Bochner function space $L^1(\mu ,X)$ JO - Studia Mathematica PY - 2012 SP - 247 EP - 265 VL - 209 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm209-3-4/ DO - 10.4064/sm209-3-4 LA - en ID - 10_4064_sm209_3_4 ER -
Marián Fabian; Sebastián Lajara. Smooth renormings of the Lebesgue–Bochner function space $L^1(\mu ,X)$. Studia Mathematica, Tome 209 (2012) no. 3, pp. 247-265. doi: 10.4064/sm209-3-4
Cité par Sources :