2-local Jordan automorphisms on operator algebras
Studia Mathematica, Tome 209 (2012) no. 3, pp. 235-246
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We investigate $2$-local Jordan automorphisms on operator algebras. In particular, we show that every $2$-local Jordan automorphism of the algebra of all
$n\times n$ real or complex matrices is either an automorphism or an anti-automorphism. The same is true for $2$-local Jordan automorphisms of any subalgebra of $\mathcal B$ which contains the ideal of all compact
operators on $X$,
where $X$ is a real or complex separable Banach spaces and $\mathcal B$ is
the algebra of all bounded linear operators on $X$.
Keywords:
investigate local jordan automorphisms operator algebras particular every local jordan automorphism algebra times real complex matrices either automorphism anti automorphism local jordan automorphisms subalgebra nbsp mathcal which contains ideal compact operators where real complex separable banach spaces mathcal algebra bounded linear operators nbsp
Affiliations des auteurs :
Ajda Fošner 1
@article{10_4064_sm209_3_3,
author = {Ajda Fo\v{s}ner},
title = {2-local {Jordan} automorphisms on operator algebras},
journal = {Studia Mathematica},
pages = {235--246},
publisher = {mathdoc},
volume = {209},
number = {3},
year = {2012},
doi = {10.4064/sm209-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm209-3-3/}
}
Ajda Fošner. 2-local Jordan automorphisms on operator algebras. Studia Mathematica, Tome 209 (2012) no. 3, pp. 235-246. doi: 10.4064/sm209-3-3
Cité par Sources :