Bounded operators on weighted spaces of holomorphic functions on the upper half-plane
Studia Mathematica, Tome 209 (2012) no. 3, pp. 225-234

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $v$ be a standard weight on the upper half-plane $ \mathbb G$, i.e. $v: \mathbb G \rightarrow \mathopen]0, \infty\mathclose[$ is continuous and satisfies $v(w) = v( i \mathop{\rm Im} w)$, $ w \in \mathbb G$, $v(it) \geq v(is)$ if $ t \geq s > 0$ and $ \lim_{t \rightarrow 0} v(it) = 0$. Put $v_1(w) = \mathop{\rm Im} w \, v(w)$, $ w \in \mathbb G$. We characterize boundedness and surjectivity of the differentiation operator $D: Hv(\mathbb G) \rightarrow Hv_1(\mathbb G)$. For example we show that $D$ is bounded if and only if $v$ is at most of moderate growth. We also study composition operators on $Hv(\mathbb G)$.
DOI : 10.4064/sm209-3-2
Keywords: standard weight upper half plane mathbb mathbb rightarrow mathopen infty mathclose continuous satisfies mathop mathbb geq geq lim rightarrow put mathop mathbb characterize boundedness surjectivity differentiation operator mathbb rightarrow mathbb example bounded only moderate growth study composition operators mathbb

Mohammad Ali Ardalani 1 ; Wolfgang Lusky 2

1 Department of Mathematics Faculty of Science University of Kurdistan Pasdaran Ave. Postal code: 66177-15175 Sanandaj, Iran
2 Institute for Mathematics University of Paderborn Warburger Str. 100 D-33098 Paderborn, Germany
@article{10_4064_sm209_3_2,
     author = {Mohammad Ali Ardalani and Wolfgang Lusky},
     title = {Bounded operators on weighted spaces of holomorphic functions
on the upper half-plane},
     journal = {Studia Mathematica},
     pages = {225--234},
     publisher = {mathdoc},
     volume = {209},
     number = {3},
     year = {2012},
     doi = {10.4064/sm209-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm209-3-2/}
}
TY  - JOUR
AU  - Mohammad Ali Ardalani
AU  - Wolfgang Lusky
TI  - Bounded operators on weighted spaces of holomorphic functions
on the upper half-plane
JO  - Studia Mathematica
PY  - 2012
SP  - 225
EP  - 234
VL  - 209
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm209-3-2/
DO  - 10.4064/sm209-3-2
LA  - en
ID  - 10_4064_sm209_3_2
ER  - 
%0 Journal Article
%A Mohammad Ali Ardalani
%A Wolfgang Lusky
%T Bounded operators on weighted spaces of holomorphic functions
on the upper half-plane
%J Studia Mathematica
%D 2012
%P 225-234
%V 209
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm209-3-2/
%R 10.4064/sm209-3-2
%G en
%F 10_4064_sm209_3_2
Mohammad Ali Ardalani; Wolfgang Lusky. Bounded operators on weighted spaces of holomorphic functions
on the upper half-plane. Studia Mathematica, Tome 209 (2012) no. 3, pp. 225-234. doi: 10.4064/sm209-3-2

Cité par Sources :