Contractive homomorphisms of
measure algebras and Fourier algebras
Studia Mathematica, Tome 209 (2012) no. 2, pp. 135-150
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that the dual version of our factorization [J. Funct. Anal. 261 (2011)] of contractive homomorphisms $\varphi : L^1(F) \rightarrow M(G)$ between group/measure algebras fails to hold in the dual, Fourier/Fourier–Stieltjes algebra, setting. We characterize the contractive $w^*\hbox {-}w^*$ continuous homomorphisms between measure algebras and (reduced) Fourier–Stieltjes algebras. We consider the problem of describing all contractive homomorphisms $\varphi : L^1(F) \rightarrow L^1(G)$.
Keywords:
dual version factorization funct anal contractive homomorphisms varphi rightarrow between group measure algebras fails dual fourier fourier stieltjes algebra setting characterize contractive * hbox * continuous homomorphisms between measure algebras reduced fourier stieltjes algebras consider problem describing contractive homomorphisms varphi rightarrow
Affiliations des auteurs :
Ross Stokke 1
@article{10_4064_sm209_2_3,
author = {Ross Stokke},
title = {Contractive homomorphisms of
measure algebras and {Fourier} algebras},
journal = {Studia Mathematica},
pages = {135--150},
publisher = {mathdoc},
volume = {209},
number = {2},
year = {2012},
doi = {10.4064/sm209-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm209-2-3/}
}
Ross Stokke. Contractive homomorphisms of measure algebras and Fourier algebras. Studia Mathematica, Tome 209 (2012) no. 2, pp. 135-150. doi: 10.4064/sm209-2-3
Cité par Sources :