1Department of Mathematics University of Bucharest Bd. Regina Elisabeta nr. 4-12 Bucureşti, Romania 2Department of Pure Mathematics Center of Excellence in Analysis on Algebraic Structures (CEAAS) Ferdowsi University of Mashhad P.O. Box 1159 Mashhad 91775, Iran
Studia Mathematica, Tome 209 (2012) no. 1, pp. 11-19
We introduce a notion of Morita equivalence for Hilbert $C^*$-modules in terms of the Morita equivalence of the algebras of compact operators on Hilbert $C^*$-modules. We investigate the properties of the new Morita equivalence. We apply our results to study continuous actions of locally compact groups on full Hilbert $C^*$-modules. We also present an extension of Green's theorem in the context of Hilbert $C^*$-modules.
Maria Joiţa 
1
;
Mohammad Sal Moslehian 
2
1
Department of Mathematics University of Bucharest Bd. Regina Elisabeta nr. 4-12 Bucureşti, Romania
2
Department of Pure Mathematics Center of Excellence in Analysis on Algebraic Structures (CEAAS) Ferdowsi University of Mashhad P.O. Box 1159 Mashhad 91775, Iran
@article{10_4064_sm209_1_2,
author = {Maria Joi\c{t}a and Mohammad Sal Moslehian},
title = {A {Morita} equivalence for {Hilbert} $C^*$-modules},
journal = {Studia Mathematica},
pages = {11--19},
year = {2012},
volume = {209},
number = {1},
doi = {10.4064/sm209-1-2},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm209-1-2/}
}
TY - JOUR
AU - Maria Joiţa
AU - Mohammad Sal Moslehian
TI - A Morita equivalence for Hilbert $C^*$-modules
JO - Studia Mathematica
PY - 2012
SP - 11
EP - 19
VL - 209
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm209-1-2/
DO - 10.4064/sm209-1-2
LA - fr
ID - 10_4064_sm209_1_2
ER -
%0 Journal Article
%A Maria Joiţa
%A Mohammad Sal Moslehian
%T A Morita equivalence for Hilbert $C^*$-modules
%J Studia Mathematica
%D 2012
%P 11-19
%V 209
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm209-1-2/
%R 10.4064/sm209-1-2
%G fr
%F 10_4064_sm209_1_2
Maria Joiţa; Mohammad Sal Moslehian. A Morita equivalence for Hilbert $C^*$-modules. Studia Mathematica, Tome 209 (2012) no. 1, pp. 11-19. doi: 10.4064/sm209-1-2