Similarity-preserving linear maps on $B(X)$
Studia Mathematica, Tome 209 (2012) no. 1, pp. 1-10

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X$ be an infinite-dimensional Banach space, and $B(X)$ the algebra of all bounded linear operators on $X$. Then $\phi: B(X)\to B(X)$ is a bijective similarity-preserving linear map if and only if one of the following holds:(1) There exist a nonzero complex number $c$, an invertible bounded operator $T$ in $B(X)$ and a similarity-invariant linear functional $h$ on $B(X)$ with $h(I)\ne -c$ such that $\phi(A)=cTAT^{-1}+h(A)I$ for all $A\in B(X)$.(2) There exist a nonzero complex number $c$, an invertible bounded linear operator $T: X^*\to X$ and a similarity-invariant linear functional $h$ on $B(X)$ with $h(I)\ne -c$ such that $\phi(A)=cTA^*T^{-1}+h(A)I$ for all $A\in B(X)$.
DOI : 10.4064/sm209-1-1
Keywords: infinite dimensional banach space algebra bounded linear operators phi bijective similarity preserving linear map only following holds there exist nonzero complex number invertible bounded operator similarity invariant linear functional c phi ctat there exist nonzero complex number invertible bounded linear operator * similarity invariant linear functional c phi cta *t

Fangyan Lu 1 ; Chaoran Peng 1

1 Department of Mathematics Soochow University Suzhou 215006, P.R. China
@article{10_4064_sm209_1_1,
     author = {Fangyan Lu and Chaoran Peng},
     title = {Similarity-preserving linear maps on  $B(X)$},
     journal = {Studia Mathematica},
     pages = {1--10},
     publisher = {mathdoc},
     volume = {209},
     number = {1},
     year = {2012},
     doi = {10.4064/sm209-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm209-1-1/}
}
TY  - JOUR
AU  - Fangyan Lu
AU  - Chaoran Peng
TI  - Similarity-preserving linear maps on  $B(X)$
JO  - Studia Mathematica
PY  - 2012
SP  - 1
EP  - 10
VL  - 209
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm209-1-1/
DO  - 10.4064/sm209-1-1
LA  - en
ID  - 10_4064_sm209_1_1
ER  - 
%0 Journal Article
%A Fangyan Lu
%A Chaoran Peng
%T Similarity-preserving linear maps on  $B(X)$
%J Studia Mathematica
%D 2012
%P 1-10
%V 209
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm209-1-1/
%R 10.4064/sm209-1-1
%G en
%F 10_4064_sm209_1_1
Fangyan Lu; Chaoran Peng. Similarity-preserving linear maps on  $B(X)$. Studia Mathematica, Tome 209 (2012) no. 1, pp. 1-10. doi: 10.4064/sm209-1-1

Cité par Sources :