Similarity-preserving linear maps on $B(X)$
Studia Mathematica, Tome 209 (2012) no. 1, pp. 1-10
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $X$ be an infinite-dimensional Banach space, and $B(X)$ the
algebra of all bounded linear operators on $X$. Then
$\phi: B(X)\to B(X)$ is a bijective similarity-preserving linear map if and
only if one of the following holds:(1) There exist a nonzero complex number $c$, an invertible bounded
operator $T$ in $B(X)$ and a similarity-invariant linear
functional $h$ on $B(X)$ with $h(I)\ne -c$ such that
$\phi(A)=cTAT^{-1}+h(A)I$ for all $A\in B(X)$.(2) There
exist a nonzero complex number $c$, an invertible bounded linear operator
$T: X^*\to X$ and a similarity-invariant linear functional $h$ on
$B(X)$ with $h(I)\ne -c$ such that $\phi(A)=cTA^*T^{-1}+h(A)I$
for all $A\in B(X)$.
Keywords:
infinite dimensional banach space algebra bounded linear operators phi bijective similarity preserving linear map only following holds there exist nonzero complex number invertible bounded operator similarity invariant linear functional c phi ctat there exist nonzero complex number invertible bounded linear operator * similarity invariant linear functional c phi cta *t
Affiliations des auteurs :
Fangyan Lu 1 ; Chaoran Peng 1
@article{10_4064_sm209_1_1,
author = {Fangyan Lu and Chaoran Peng},
title = {Similarity-preserving linear maps on $B(X)$},
journal = {Studia Mathematica},
pages = {1--10},
publisher = {mathdoc},
volume = {209},
number = {1},
year = {2012},
doi = {10.4064/sm209-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm209-1-1/}
}
Fangyan Lu; Chaoran Peng. Similarity-preserving linear maps on $B(X)$. Studia Mathematica, Tome 209 (2012) no. 1, pp. 1-10. doi: 10.4064/sm209-1-1
Cité par Sources :