Powers of $m$-isometries
Studia Mathematica, Tome 208 (2012) no. 3, pp. 249-255

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A bounded linear operator $T$ on a Banach space $X$ is called an $(m,p)$-isometry for a positive integer $m$ and a real number $p \geq 1$ if, for any vector $x \in X$, $$ \sum _{k=0}^m (-1)^{k} \left({m\atop k}\right ) \|T^k x\| ^p =0 . $$We prove that any power of an $(m,p)$-isometry is also an $(m,p)$-isometry. In general the converse is not true. However, we prove that if $T^r$ and $T^{r+1}$ are $(m,p)$-isometries for a positive integer $r$, then $T$ is an $(m,p)$-isometry. More precisely, if $T^r$ is an $(m,p)$-isometry and $T^s$ is an $(l,p)$-isometry, then $T^t$ is an $(h,p)$-isometry, where $t={\rm gcd}(r, s)$ and $h={\rm min}(m,l)$.
DOI : 10.4064/sm208-3-4
Keywords: bounded linear operator banach space called isometry positive integer real number geq vector sum atop right prove power isometry isometry general converse however prove isometries positive integer isometry precisely isometry isometry isometry where gcd min

Teresa Bermúdez 1 ; Carlos Díaz Mendoza 1 ; Antonio Martinón 1

1 Departamento de Análisis Matemático Universidad de La Laguna 38271 La Laguna (Tenerife), Spain
@article{10_4064_sm208_3_4,
     author = {Teresa Berm\'udez and Carlos D{\'\i}az Mendoza and Antonio Martin\'on},
     title = {Powers of $m$-isometries},
     journal = {Studia Mathematica},
     pages = {249--255},
     publisher = {mathdoc},
     volume = {208},
     number = {3},
     year = {2012},
     doi = {10.4064/sm208-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm208-3-4/}
}
TY  - JOUR
AU  - Teresa Bermúdez
AU  - Carlos Díaz Mendoza
AU  - Antonio Martinón
TI  - Powers of $m$-isometries
JO  - Studia Mathematica
PY  - 2012
SP  - 249
EP  - 255
VL  - 208
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm208-3-4/
DO  - 10.4064/sm208-3-4
LA  - en
ID  - 10_4064_sm208_3_4
ER  - 
%0 Journal Article
%A Teresa Bermúdez
%A Carlos Díaz Mendoza
%A Antonio Martinón
%T Powers of $m$-isometries
%J Studia Mathematica
%D 2012
%P 249-255
%V 208
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm208-3-4/
%R 10.4064/sm208-3-4
%G en
%F 10_4064_sm208_3_4
Teresa Bermúdez; Carlos Díaz Mendoza; Antonio Martinón. Powers of $m$-isometries. Studia Mathematica, Tome 208 (2012) no. 3, pp. 249-255. doi: 10.4064/sm208-3-4

Cité par Sources :