Powers of $m$-isometries
Studia Mathematica, Tome 208 (2012) no. 3, pp. 249-255
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A bounded linear operator $T$ on a Banach space $X$ is called an $(m,p)$-isometry for a positive integer $m$ and a real number $p \geq 1$ if, for any vector $x \in X$,
$$ \sum _{k=0}^m (-1)^{k} \left({m\atop k}\right ) \|T^k x\| ^p =0 . $$We prove that any power of an $(m,p)$-isometry is also an
$(m,p)$-isometry. In general the converse is not true. However, we
prove that if $T^r$ and $T^{r+1}$ are $(m,p)$-isometries for a
positive integer $r$, then $T$ is an $(m,p)$-isometry. More
precisely, if $T^r$ is an $(m,p)$-isometry and $T^s$
is an $(l,p)$-isometry, then $T^t$ is an $(h,p)$-isometry, where
$t={\rm gcd}(r, s)$ and $h={\rm min}(m,l)$.
Keywords:
bounded linear operator banach space called isometry positive integer real number geq vector sum atop right prove power isometry isometry general converse however prove isometries positive integer isometry precisely isometry isometry isometry where gcd min
Affiliations des auteurs :
Teresa Bermúdez 1 ; Carlos Díaz Mendoza 1 ; Antonio Martinón 1
@article{10_4064_sm208_3_4,
author = {Teresa Berm\'udez and Carlos D{\'\i}az Mendoza and Antonio Martin\'on},
title = {Powers of $m$-isometries},
journal = {Studia Mathematica},
pages = {249--255},
publisher = {mathdoc},
volume = {208},
number = {3},
year = {2012},
doi = {10.4064/sm208-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm208-3-4/}
}
TY - JOUR AU - Teresa Bermúdez AU - Carlos Díaz Mendoza AU - Antonio Martinón TI - Powers of $m$-isometries JO - Studia Mathematica PY - 2012 SP - 249 EP - 255 VL - 208 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm208-3-4/ DO - 10.4064/sm208-3-4 LA - en ID - 10_4064_sm208_3_4 ER -
Teresa Bermúdez; Carlos Díaz Mendoza; Antonio Martinón. Powers of $m$-isometries. Studia Mathematica, Tome 208 (2012) no. 3, pp. 249-255. doi: 10.4064/sm208-3-4
Cité par Sources :