New spectral multiplicities for ergodic actions
Studia Mathematica, Tome 208 (2012) no. 3, pp. 229-247
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $G$ be a locally compact second countable Abelian group.
Given a measure preserving action $T$ of $G$ on a standard probability space $(X, \mu)$,
let $\mathcal M(T)$ denote the set of essential values of the spectral multiplicity function of the Koopman representation $U_T$ of $G$ defined in $L^2(X,\mu)\ominus \mathbb C$ by $U_T(g)f := f\circ T_{-g}$.
If $G$ is either a discrete countable Abelian group or $\mathbb R^n$, $n\geq 1$, it is shown that the sets of the form $\{p,q,pq\}$, $\{p,q,r,pq,pr,qr,pqr\}$ etc. or any multiplicative (and additive) subsemigroup of $\mathbb N$ are realizable as $\mathcal M(T)$ for a weakly mixing $G$-action $T$.
Keywords:
locally compact second countable abelian group given measure preserving action standard probability space mathcal denote set essential values spectral multiplicity function koopman representation defined ominus mathbb f circ g either discrete countable abelian group mathbb geq shown sets form pqr etc multiplicative additive subsemigroup mathbb realizable mathcal weakly mixing g action nbsp
Affiliations des auteurs :
Anton V. Solomko  1
@article{10_4064_sm208_3_3,
author = {Anton V. Solomko},
title = {New spectral multiplicities for ergodic actions},
journal = {Studia Mathematica},
pages = {229--247},
year = {2012},
volume = {208},
number = {3},
doi = {10.4064/sm208-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm208-3-3/}
}
Anton V. Solomko. New spectral multiplicities for ergodic actions. Studia Mathematica, Tome 208 (2012) no. 3, pp. 229-247. doi: 10.4064/sm208-3-3
Cité par Sources :