New spectral multiplicities for ergodic actions
Studia Mathematica, Tome 208 (2012) no. 3, pp. 229-247 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $G$ be a locally compact second countable Abelian group. Given a measure preserving action $T$ of $G$ on a standard probability space $(X, \mu)$, let $\mathcal M(T)$ denote the set of essential values of the spectral multiplicity function of the Koopman representation $U_T$ of $G$ defined in $L^2(X,\mu)\ominus \mathbb C$ by $U_T(g)f := f\circ T_{-g}$. If $G$ is either a discrete countable Abelian group or $\mathbb R^n$, $n\geq 1$, it is shown that the sets of the form $\{p,q,pq\}$, $\{p,q,r,pq,pr,qr,pqr\}$ etc. or any multiplicative (and additive) subsemigroup of $\mathbb N$ are realizable as $\mathcal M(T)$ for a weakly mixing $G$-action $T$.
DOI : 10.4064/sm208-3-3
Keywords: locally compact second countable abelian group given measure preserving action standard probability space mathcal denote set essential values spectral multiplicity function koopman representation defined ominus mathbb f circ g either discrete countable abelian group mathbb geq shown sets form pqr etc multiplicative additive subsemigroup mathbb realizable mathcal weakly mixing g action nbsp

Anton V. Solomko  1

1 Institute for Low Temperature Physics & Engineering National Academy of Sciences of Ukraine 47 Lenin Ave. Kharkov, 61164, Ukraine
@article{10_4064_sm208_3_3,
     author = {Anton V. Solomko},
     title = {New spectral multiplicities for ergodic actions},
     journal = {Studia Mathematica},
     pages = {229--247},
     year = {2012},
     volume = {208},
     number = {3},
     doi = {10.4064/sm208-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm208-3-3/}
}
TY  - JOUR
AU  - Anton V. Solomko
TI  - New spectral multiplicities for ergodic actions
JO  - Studia Mathematica
PY  - 2012
SP  - 229
EP  - 247
VL  - 208
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm208-3-3/
DO  - 10.4064/sm208-3-3
LA  - en
ID  - 10_4064_sm208_3_3
ER  - 
%0 Journal Article
%A Anton V. Solomko
%T New spectral multiplicities for ergodic actions
%J Studia Mathematica
%D 2012
%P 229-247
%V 208
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm208-3-3/
%R 10.4064/sm208-3-3
%G en
%F 10_4064_sm208_3_3
Anton V. Solomko. New spectral multiplicities for ergodic actions. Studia Mathematica, Tome 208 (2012) no. 3, pp. 229-247. doi: 10.4064/sm208-3-3

Cité par Sources :