Semiconjugacy to a map of a constant slope
Studia Mathematica, Tome 208 (2012) no. 3, pp. 213-228
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is well known that any continuous piecewise monotone interval map $f$ with positive topological entropy $h_{\rm top}(f)$ is semiconjugate to some piecewise affine map with constant slope $e^{h_{\rm top}(f)}$. We prove this result for a class of Markov countably piecewise monotone continuous interval maps.
Keywords:
known continuous piecewise monotone interval map positive topological entropy top semiconjugate piecewise affine map constant slope top prove result class markov countably piecewise monotone continuous interval maps
Affiliations des auteurs :
Jozef Bobok 1
@article{10_4064_sm208_3_2,
author = {Jozef Bobok},
title = {Semiconjugacy to a map of a constant slope},
journal = {Studia Mathematica},
pages = {213--228},
publisher = {mathdoc},
volume = {208},
number = {3},
year = {2012},
doi = {10.4064/sm208-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm208-3-2/}
}
Jozef Bobok. Semiconjugacy to a map of a constant slope. Studia Mathematica, Tome 208 (2012) no. 3, pp. 213-228. doi: 10.4064/sm208-3-2
Cité par Sources :