Semiconjugacy to a map of a constant slope
Studia Mathematica, Tome 208 (2012) no. 3, pp. 213-228

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is well known that any continuous piecewise monotone interval map $f$ with positive topological entropy $h_{\rm top}(f)$ is semiconjugate to some piecewise affine map with constant slope $e^{h_{\rm top}(f)}$. We prove this result for a class of Markov countably piecewise monotone continuous interval maps.
DOI : 10.4064/sm208-3-2
Keywords: known continuous piecewise monotone interval map positive topological entropy top semiconjugate piecewise affine map constant slope top prove result class markov countably piecewise monotone continuous interval maps

Jozef Bobok 1

1 Department of Mathematics FCE of Czech Technical University in Prague Thákurova 7 166 29 Praha 6, Czech Republic
@article{10_4064_sm208_3_2,
     author = {Jozef Bobok},
     title = {Semiconjugacy to a map of a constant slope},
     journal = {Studia Mathematica},
     pages = {213--228},
     publisher = {mathdoc},
     volume = {208},
     number = {3},
     year = {2012},
     doi = {10.4064/sm208-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm208-3-2/}
}
TY  - JOUR
AU  - Jozef Bobok
TI  - Semiconjugacy to a map of a constant slope
JO  - Studia Mathematica
PY  - 2012
SP  - 213
EP  - 228
VL  - 208
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm208-3-2/
DO  - 10.4064/sm208-3-2
LA  - en
ID  - 10_4064_sm208_3_2
ER  - 
%0 Journal Article
%A Jozef Bobok
%T Semiconjugacy to a map of a constant slope
%J Studia Mathematica
%D 2012
%P 213-228
%V 208
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm208-3-2/
%R 10.4064/sm208-3-2
%G en
%F 10_4064_sm208_3_2
Jozef Bobok. Semiconjugacy to a map of a constant slope. Studia Mathematica, Tome 208 (2012) no. 3, pp. 213-228. doi: 10.4064/sm208-3-2

Cité par Sources :