Fully representable and $^*$-semisimple topological partial $^*$-algebras
Studia Mathematica, Tome 208 (2012) no. 2, pp. 167-194

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We continue our study of topological partial $^*$-algebras, focusing our attention on $^*$-semisimple partial $^*$-algebras, that is, those that possess a {multiplication core} and sufficiently many $^*$-representations. We discuss the respective roles of invariant positive sesquilinear (ips) forms and representable continuous linear functionals, and focus on the case where the two notions are completely interchangeable (fully representable partial $^*$-algebras) with the aim of characterizing a $^*$-semisimple partial $^*$-algebra. Finally we describe various notions of bounded elements in such a partial $^*$-algebra, in particular, those defined in terms of a positive cone (order bounded elements). The outcome is that, for an appropriate order relation, one recovers the $\mathcal M$-bounded elements introduced in previous works.
DOI : 10.4064/sm208-2-4
Keywords: continue study topological partial * algebras focusing attention * semisimple partial * algebras those possess multiplication core sufficiently many * representations discuss respective roles invariant positive sesquilinear ips forms representable continuous linear functionals focus where notions completely interchangeable fully representable partial * algebras characterizing * semisimple partial * algebra finally describe various notions bounded elements partial * algebra particular those defined terms positive cone order bounded elements outcome appropriate order relation recovers mathcal m bounded elements introduced previous works

J.-P. Antoine 1 ; G. Bellomonte 2 ; C. Trapani 2

1 Institut de Recherche en Mathématique et Physique Université Catholique de Louvain B-1348 Louvain-la-Neuve, Belgium
2 Dipartimento di Matematica e Informatica Università di Palermo I-90123 Palermo, Italy
@article{10_4064_sm208_2_4,
     author = {J.-P. Antoine and G. Bellomonte and C. Trapani},
     title = {Fully representable and $^*$-semisimple topological partial $^*$-algebras},
     journal = {Studia Mathematica},
     pages = {167--194},
     publisher = {mathdoc},
     volume = {208},
     number = {2},
     year = {2012},
     doi = {10.4064/sm208-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm208-2-4/}
}
TY  - JOUR
AU  - J.-P. Antoine
AU  - G. Bellomonte
AU  - C. Trapani
TI  - Fully representable and $^*$-semisimple topological partial $^*$-algebras
JO  - Studia Mathematica
PY  - 2012
SP  - 167
EP  - 194
VL  - 208
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm208-2-4/
DO  - 10.4064/sm208-2-4
LA  - en
ID  - 10_4064_sm208_2_4
ER  - 
%0 Journal Article
%A J.-P. Antoine
%A G. Bellomonte
%A C. Trapani
%T Fully representable and $^*$-semisimple topological partial $^*$-algebras
%J Studia Mathematica
%D 2012
%P 167-194
%V 208
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm208-2-4/
%R 10.4064/sm208-2-4
%G en
%F 10_4064_sm208_2_4
J.-P. Antoine; G. Bellomonte; C. Trapani. Fully representable and $^*$-semisimple topological partial $^*$-algebras. Studia Mathematica, Tome 208 (2012) no. 2, pp. 167-194. doi: 10.4064/sm208-2-4

Cité par Sources :