1Institut de Recherche en Mathématique et Physique Université Catholique de Louvain B-1348 Louvain-la-Neuve, Belgium 2Dipartimento di Matematica e Informatica Università di Palermo I-90123 Palermo, Italy
Studia Mathematica, Tome 208 (2012) no. 2, pp. 167-194
We continue our study of topological partial $^*$-algebras, focusing our attention on $^*$-semisimple partial $^*$-algebras, that is,
those that possess a {multiplication core} and sufficiently many $^*$-representations.
We discuss the respective roles of invariant positive sesquilinear (ips) forms and representable continuous linear functionals, and focus on the case where the two notions
are completely interchangeable (fully representable partial $^*$-algebras) with the aim of characterizing a $^*$-semisimple partial $^*$-algebra.
Finally we describe various notions of bounded elements in such a partial $^*$-algebra, in particular, those defined in terms of a positive cone (order bounded elements).
The outcome is that, for an appropriate order relation,
one recovers the $\mathcal M$-bounded elements introduced in previous works.
Keywords:
continue study topological partial * algebras focusing attention * semisimple partial * algebras those possess multiplication core sufficiently many * representations discuss respective roles invariant positive sesquilinear ips forms representable continuous linear functionals focus where notions completely interchangeable fully representable partial * algebras characterizing * semisimple partial * algebra finally describe various notions bounded elements partial * algebra particular those defined terms positive cone order bounded elements outcome appropriate order relation recovers mathcal m bounded elements introduced previous works
Affiliations des auteurs :
J.-P. Antoine 
1
;
G. Bellomonte 
2
;
C. Trapani 
2
1
Institut de Recherche en Mathématique et Physique Université Catholique de Louvain B-1348 Louvain-la-Neuve, Belgium
2
Dipartimento di Matematica e Informatica Università di Palermo I-90123 Palermo, Italy
@article{10_4064_sm208_2_4,
author = {J.-P. Antoine and G. Bellomonte and C. Trapani},
title = {Fully representable and $^*$-semisimple topological partial $^*$-algebras},
journal = {Studia Mathematica},
pages = {167--194},
year = {2012},
volume = {208},
number = {2},
doi = {10.4064/sm208-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm208-2-4/}
}
TY - JOUR
AU - J.-P. Antoine
AU - G. Bellomonte
AU - C. Trapani
TI - Fully representable and $^*$-semisimple topological partial $^*$-algebras
JO - Studia Mathematica
PY - 2012
SP - 167
EP - 194
VL - 208
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm208-2-4/
DO - 10.4064/sm208-2-4
LA - en
ID - 10_4064_sm208_2_4
ER -
%0 Journal Article
%A J.-P. Antoine
%A G. Bellomonte
%A C. Trapani
%T Fully representable and $^*$-semisimple topological partial $^*$-algebras
%J Studia Mathematica
%D 2012
%P 167-194
%V 208
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm208-2-4/
%R 10.4064/sm208-2-4
%G en
%F 10_4064_sm208_2_4
J.-P. Antoine; G. Bellomonte; C. Trapani. Fully representable and $^*$-semisimple topological partial $^*$-algebras. Studia Mathematica, Tome 208 (2012) no. 2, pp. 167-194. doi: 10.4064/sm208-2-4