Open projections in operator algebras I: Comparison theory
Studia Mathematica, Tome 208 (2012) no. 2, pp. 117-150

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We begin a program of generalizing basic elements of the theory of comparison, equivalence, and subequivalence, of elements in C$^*$-algebras, to the setting of more general algebras. In particular, we follow the recent lead of Lin, Ortega, Rørdam, and Thiel of studying these equivalences, etc., in terms of open projections or module isomorphisms. We also define and characterize a new class of inner ideals in operator algebras, and develop a matching theory of open partial isometries in operator ideals which simultaneously generalize the open projections in operator algebras (in the sense of the authors and Hay), and the open partial isometries (tripotents) introduced by the authors.
DOI : 10.4064/sm208-2-2
Keywords: begin program generalizing basic elements theory comparison equivalence subequivalence elements * algebras setting general algebras particular follow recent lead lin ortega rdam thiel studying these equivalences etc terms projections module isomorphisms define characterize class inner ideals operator algebras develop matching theory partial isometries operator ideals which simultaneously generalize projections operator algebras sense authors hay partial isometries tripotents introduced authors

David P. Blecher 1 ; Matthew Neal 2

1 Department of Mathematics University of Houston Houston, TX 77204-3008, U.S.A.
2 Department of Mathematics Denison University Granville, OH 43023, U.S.A.
@article{10_4064_sm208_2_2,
     author = {David P. Blecher and Matthew Neal},
     title = {Open projections in operator algebras {I:} {Comparison} theory},
     journal = {Studia Mathematica},
     pages = {117--150},
     publisher = {mathdoc},
     volume = {208},
     number = {2},
     year = {2012},
     doi = {10.4064/sm208-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm208-2-2/}
}
TY  - JOUR
AU  - David P. Blecher
AU  - Matthew Neal
TI  - Open projections in operator algebras I: Comparison theory
JO  - Studia Mathematica
PY  - 2012
SP  - 117
EP  - 150
VL  - 208
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm208-2-2/
DO  - 10.4064/sm208-2-2
LA  - en
ID  - 10_4064_sm208_2_2
ER  - 
%0 Journal Article
%A David P. Blecher
%A Matthew Neal
%T Open projections in operator algebras I: Comparison theory
%J Studia Mathematica
%D 2012
%P 117-150
%V 208
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm208-2-2/
%R 10.4064/sm208-2-2
%G en
%F 10_4064_sm208_2_2
David P. Blecher; Matthew Neal. Open projections in operator algebras I: Comparison theory. Studia Mathematica, Tome 208 (2012) no. 2, pp. 117-150. doi: 10.4064/sm208-2-2

Cité par Sources :