Open projections in operator algebras I: Comparison theory
Studia Mathematica, Tome 208 (2012) no. 2, pp. 117-150
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We begin a program of generalizing basic elements of the theory of comparison, equivalence, and subequivalence, of elements in C$^*$-algebras, to the setting of more general algebras. In particular, we follow the recent lead of Lin, Ortega, Rørdam, and Thiel of studying these equivalences, etc., in terms of open projections or module isomorphisms. We also define and characterize a new class of inner ideals in operator algebras, and develop a matching theory of open partial isometries in operator ideals which simultaneously generalize the open projections in operator algebras (in the sense of the authors and Hay), and the open partial isometries (tripotents) introduced by the authors.
Keywords:
begin program generalizing basic elements theory comparison equivalence subequivalence elements * algebras setting general algebras particular follow recent lead lin ortega rdam thiel studying these equivalences etc terms projections module isomorphisms define characterize class inner ideals operator algebras develop matching theory partial isometries operator ideals which simultaneously generalize projections operator algebras sense authors hay partial isometries tripotents introduced authors
Affiliations des auteurs :
David P. Blecher 1 ; Matthew Neal 2
@article{10_4064_sm208_2_2,
author = {David P. Blecher and Matthew Neal},
title = {Open projections in operator algebras {I:} {Comparison} theory},
journal = {Studia Mathematica},
pages = {117--150},
publisher = {mathdoc},
volume = {208},
number = {2},
year = {2012},
doi = {10.4064/sm208-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm208-2-2/}
}
TY - JOUR AU - David P. Blecher AU - Matthew Neal TI - Open projections in operator algebras I: Comparison theory JO - Studia Mathematica PY - 2012 SP - 117 EP - 150 VL - 208 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm208-2-2/ DO - 10.4064/sm208-2-2 LA - en ID - 10_4064_sm208_2_2 ER -
David P. Blecher; Matthew Neal. Open projections in operator algebras I: Comparison theory. Studia Mathematica, Tome 208 (2012) no. 2, pp. 117-150. doi: 10.4064/sm208-2-2
Cité par Sources :