Isolated points of spectrum of $k$-quasi-$*$-class $A$ operators
Studia Mathematica, Tome 208 (2012) no. 1, pp. 87-96

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $T$ be a bounded linear operator on a complex Hilbert space $H$. In this paper we introduce a new class, denoted $\mathcal{KQA}^{*}$, of operators satisfying $T^{*k}(|T^{2}|-|T^{*}|^{2})T^{k}\geq 0$ where $k$ is a natural number, and we prove basic structural properties of these operators. Using these results, we also show that if $E$ is the Riesz idempotent for a non-zero isolated point $\mu$ of the spectrum of $T\in \mathcal{KQA}^{*}$, then $E$ is self-adjoint and $EH=\ker(T-\mu)=\ker\,(T-\mu)^{*}$. Some spectral properties are also presented.
DOI : 10.4064/sm208-1-6
Keywords: bounded linear operator complex hilbert space paper introduce class denoted mathcal kqa * operators satisfying *k * geq where natural number prove basic structural properties these operators using these results riesz idempotent non zero isolated point spectrum mathcal kqa * self adjoint ker t ker t * spectral properties presented

Salah Mecheri 1

1 Department of Mathematics College of Sciences Taibah University P.O. Box 20003 Al-Madinah Al Munawarah, Saudi Arabia
@article{10_4064_sm208_1_6,
     author = {Salah Mecheri},
     title = {Isolated points of spectrum of $k$-quasi-$*$-class $A$ operators},
     journal = {Studia Mathematica},
     pages = {87--96},
     publisher = {mathdoc},
     volume = {208},
     number = {1},
     year = {2012},
     doi = {10.4064/sm208-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm208-1-6/}
}
TY  - JOUR
AU  - Salah Mecheri
TI  - Isolated points of spectrum of $k$-quasi-$*$-class $A$ operators
JO  - Studia Mathematica
PY  - 2012
SP  - 87
EP  - 96
VL  - 208
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm208-1-6/
DO  - 10.4064/sm208-1-6
LA  - en
ID  - 10_4064_sm208_1_6
ER  - 
%0 Journal Article
%A Salah Mecheri
%T Isolated points of spectrum of $k$-quasi-$*$-class $A$ operators
%J Studia Mathematica
%D 2012
%P 87-96
%V 208
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm208-1-6/
%R 10.4064/sm208-1-6
%G en
%F 10_4064_sm208_1_6
Salah Mecheri. Isolated points of spectrum of $k$-quasi-$*$-class $A$ operators. Studia Mathematica, Tome 208 (2012) no. 1, pp. 87-96. doi: 10.4064/sm208-1-6

Cité par Sources :