Isolated points of spectrum of $k$-quasi-$*$-class $A$ operators
Studia Mathematica, Tome 208 (2012) no. 1, pp. 87-96
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $T$ be a bounded linear operator on a complex Hilbert space $H$. In this paper we introduce a new class, denoted $\mathcal{KQA}^{*}$, of operators satisfying $T^{*k}(|T^{2}|-|T^{*}|^{2})T^{k}\geq 0$ where $k$ is a natural number, and we prove basic structural properties of these operators. Using these results, we also show that if $E$ is the Riesz idempotent for a non-zero isolated point $\mu$ of the spectrum of $T\in \mathcal{KQA}^{*}$, then $E$ is self-adjoint and $EH=\ker(T-\mu)=\ker\,(T-\mu)^{*}$. Some spectral properties are also presented.
Keywords:
bounded linear operator complex hilbert space paper introduce class denoted mathcal kqa * operators satisfying *k * geq where natural number prove basic structural properties these operators using these results riesz idempotent non zero isolated point spectrum mathcal kqa * self adjoint ker t ker t * spectral properties presented
Affiliations des auteurs :
Salah Mecheri 1
@article{10_4064_sm208_1_6,
author = {Salah Mecheri},
title = {Isolated points of spectrum of $k$-quasi-$*$-class $A$ operators},
journal = {Studia Mathematica},
pages = {87--96},
publisher = {mathdoc},
volume = {208},
number = {1},
year = {2012},
doi = {10.4064/sm208-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm208-1-6/}
}
Salah Mecheri. Isolated points of spectrum of $k$-quasi-$*$-class $A$ operators. Studia Mathematica, Tome 208 (2012) no. 1, pp. 87-96. doi: 10.4064/sm208-1-6
Cité par Sources :