Invariant measures for position dependent random maps with continuous random parameters
Studia Mathematica, Tome 208 (2012) no. 1, pp. 11-29
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider a family of transformations with a random parameter and study a random dynamical system in which one transformation is randomly selected from the family and applied on each iteration. The parameter space may be of cardinality continuum. Further, the selection of the transformation need not be independent of the position in the state space. We show the existence of absolutely continuous invariant measures for random maps on an interval under some conditions.
Keywords:
consider family transformations random parameter study random dynamical system which transformation randomly selected family applied each iteration parameter space may cardinality continuum further selection transformation independent position state space existence absolutely continuous invariant measures random maps interval under conditions
Affiliations des auteurs :
Tomoki Inoue 1
@article{10_4064_sm208_1_2,
author = {Tomoki Inoue},
title = {Invariant measures for position dependent random maps with continuous random parameters},
journal = {Studia Mathematica},
pages = {11--29},
publisher = {mathdoc},
volume = {208},
number = {1},
year = {2012},
doi = {10.4064/sm208-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm208-1-2/}
}
TY - JOUR AU - Tomoki Inoue TI - Invariant measures for position dependent random maps with continuous random parameters JO - Studia Mathematica PY - 2012 SP - 11 EP - 29 VL - 208 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm208-1-2/ DO - 10.4064/sm208-1-2 LA - en ID - 10_4064_sm208_1_2 ER -
Tomoki Inoue. Invariant measures for position dependent random maps with continuous random parameters. Studia Mathematica, Tome 208 (2012) no. 1, pp. 11-29. doi: 10.4064/sm208-1-2
Cité par Sources :