Eigenvalues of Hille–Tamarkin operators and geometry of Banach function spaces
Studia Mathematica, Tome 207 (2011) no. 3, pp. 275-296

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We investigate how the asymptotic eigenvalue behaviour of Hille–Tamarkin operators in Banach function spaces depends on the geometry of the spaces involved. It turns out that the relevant properties are cotype $p$ and $p$-concavity. We prove some eigenvalue estimates for Hille–Tamarkin operators in general Banach function spaces which extend the classical results in Lebesgue spaces. We specialize our results to Lorentz, Orlicz and Zygmund spaces and give applications to Fourier analysis. We are also able to show the optimality of our eigenvalue estimates in the Lorentz spaces $L_{2,q}$ with $1\le q2$ and in Zygmund spaces $L_p(\log L)_a$ with $2\le p\infty$ and $a>0$.
DOI : 10.4064/sm207-3-4
Keywords: investigate asymptotic eigenvalue behaviour hille tamarkin operators banach function spaces depends geometry spaces involved turns out relevant properties cotype p concavity prove eigenvalue estimates hille tamarkin operators general banach function spaces which extend classical results lebesgue spaces specialize results lorentz orlicz zygmund spaces applications fourier analysis able optimality eigenvalue estimates lorentz spaces zygmund spaces log infty

Thomas Kühn 1 ; Mieczysław Mastyło 2

1 Fakultät für Mathematik und Informatik Mathematisches Institut Universität Leipzig Johannisgasse 26 D-04103 Leipzig, Germany
2 Faculty of Mathematics and Computer Science Adam Mickiewicz University and Institute of Mathematics Polish Academy of Sciences (Poznań branch) Umultowska 87 61-614 Poznań, Poland
@article{10_4064_sm207_3_4,
     author = {Thomas K\"uhn and Mieczys{\l}aw Masty{\l}o},
     title = {Eigenvalues of {Hille{\textendash}Tamarkin} operators
 and geometry of {Banach} function spaces},
     journal = {Studia Mathematica},
     pages = {275--296},
     publisher = {mathdoc},
     volume = {207},
     number = {3},
     year = {2011},
     doi = {10.4064/sm207-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm207-3-4/}
}
TY  - JOUR
AU  - Thomas Kühn
AU  - Mieczysław Mastyło
TI  - Eigenvalues of Hille–Tamarkin operators
 and geometry of Banach function spaces
JO  - Studia Mathematica
PY  - 2011
SP  - 275
EP  - 296
VL  - 207
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm207-3-4/
DO  - 10.4064/sm207-3-4
LA  - en
ID  - 10_4064_sm207_3_4
ER  - 
%0 Journal Article
%A Thomas Kühn
%A Mieczysław Mastyło
%T Eigenvalues of Hille–Tamarkin operators
 and geometry of Banach function spaces
%J Studia Mathematica
%D 2011
%P 275-296
%V 207
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm207-3-4/
%R 10.4064/sm207-3-4
%G en
%F 10_4064_sm207_3_4
Thomas Kühn; Mieczysław Mastyło. Eigenvalues of Hille–Tamarkin operators
 and geometry of Banach function spaces. Studia Mathematica, Tome 207 (2011) no. 3, pp. 275-296. doi: 10.4064/sm207-3-4

Cité par Sources :