1Fakultät für Mathematik und Informatik Mathematisches Institut Universität Leipzig Johannisgasse 26 D-04103 Leipzig, Germany 2Faculty of Mathematics and Computer Science Adam Mickiewicz University and Institute of Mathematics Polish Academy of Sciences (Poznań branch) Umultowska 87 61-614 Poznań, Poland
Studia Mathematica, Tome 207 (2011) no. 3, pp. 275-296
We investigate how the asymptotic eigenvalue behaviour of
Hille–Tamarkin operators in Banach function spaces depends on
the geometry of the spaces involved. It turns out that the
relevant properties are cotype $p$ and $p$-concavity. We prove
some eigenvalue estimates for Hille–Tamarkin operators in general
Banach function spaces which extend the classical results in
Lebesgue spaces. We specialize our results to Lorentz, Orlicz and
Zygmund spaces and give applications to Fourier analysis. We are
also able to show the optimality of our eigenvalue estimates in
the Lorentz spaces $L_{2,q}$ with $1\le q2$ and in Zygmund spaces
$L_p(\log L)_a$ with $2\le p\infty$ and $a>0$.
Keywords:
investigate asymptotic eigenvalue behaviour hille tamarkin operators banach function spaces depends geometry spaces involved turns out relevant properties cotype p concavity prove eigenvalue estimates hille tamarkin operators general banach function spaces which extend classical results lebesgue spaces specialize results lorentz orlicz zygmund spaces applications fourier analysis able optimality eigenvalue estimates lorentz spaces zygmund spaces log infty
Affiliations des auteurs :
Thomas Kühn 
1
;
Mieczysław Mastyło 
2
1
Fakultät für Mathematik und Informatik Mathematisches Institut Universität Leipzig Johannisgasse 26 D-04103 Leipzig, Germany
2
Faculty of Mathematics and Computer Science Adam Mickiewicz University and Institute of Mathematics Polish Academy of Sciences (Poznań branch) Umultowska 87 61-614 Poznań, Poland
@article{10_4064_sm207_3_4,
author = {Thomas K\"uhn and Mieczys{\l}aw Masty{\l}o},
title = {Eigenvalues of {Hille{\textendash}Tamarkin} operators
and geometry of {Banach} function spaces},
journal = {Studia Mathematica},
pages = {275--296},
year = {2011},
volume = {207},
number = {3},
doi = {10.4064/sm207-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm207-3-4/}
}
TY - JOUR
AU - Thomas Kühn
AU - Mieczysław Mastyło
TI - Eigenvalues of Hille–Tamarkin operators
and geometry of Banach function spaces
JO - Studia Mathematica
PY - 2011
SP - 275
EP - 296
VL - 207
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm207-3-4/
DO - 10.4064/sm207-3-4
LA - en
ID - 10_4064_sm207_3_4
ER -
%0 Journal Article
%A Thomas Kühn
%A Mieczysław Mastyło
%T Eigenvalues of Hille–Tamarkin operators
and geometry of Banach function spaces
%J Studia Mathematica
%D 2011
%P 275-296
%V 207
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm207-3-4/
%R 10.4064/sm207-3-4
%G en
%F 10_4064_sm207_3_4
Thomas Kühn; Mieczysław Mastyło. Eigenvalues of Hille–Tamarkin operators
and geometry of Banach function spaces. Studia Mathematica, Tome 207 (2011) no. 3, pp. 275-296. doi: 10.4064/sm207-3-4