Fractional Laplacian with singular drift
Studia Mathematica, Tome 207 (2011) no. 3, pp. 257-273

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For $\alpha \in (1,2)$ we consider the equation $\partial _t u = \varDelta ^{\alpha /2} u + b \cdot \nabla u$, where $b$ is a time-independent, divergence-free singular vector field of the Morrey class $M_1^{1-\alpha }$. We show that if the Morrey norm $\| b\| _{M_1^{1-\alpha }}$ is sufficiently small, then the fundamental solution is globally in time comparable with the density of the isotropic stable process.
DOI : 10.4064/sm207-3-3
Keywords: alpha consider equation partial vardelta alpha cdot nabla where time independent divergence free singular vector field morrey class alpha morrey norm alpha sufficiently small fundamental solution globally time comparable density isotropic stable process

Tomasz Jakubowski 1

1 Institute of Mathematics and Computer Science Wrocław University of Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław, Poland
@article{10_4064_sm207_3_3,
     author = {Tomasz Jakubowski},
     title = {Fractional {Laplacian} with singular drift},
     journal = {Studia Mathematica},
     pages = {257--273},
     publisher = {mathdoc},
     volume = {207},
     number = {3},
     year = {2011},
     doi = {10.4064/sm207-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm207-3-3/}
}
TY  - JOUR
AU  - Tomasz Jakubowski
TI  - Fractional Laplacian with singular drift
JO  - Studia Mathematica
PY  - 2011
SP  - 257
EP  - 273
VL  - 207
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm207-3-3/
DO  - 10.4064/sm207-3-3
LA  - en
ID  - 10_4064_sm207_3_3
ER  - 
%0 Journal Article
%A Tomasz Jakubowski
%T Fractional Laplacian with singular drift
%J Studia Mathematica
%D 2011
%P 257-273
%V 207
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm207-3-3/
%R 10.4064/sm207-3-3
%G en
%F 10_4064_sm207_3_3
Tomasz Jakubowski. Fractional Laplacian with singular drift. Studia Mathematica, Tome 207 (2011) no. 3, pp. 257-273. doi: 10.4064/sm207-3-3

Cité par Sources :