Fractional Laplacian with singular drift
Studia Mathematica, Tome 207 (2011) no. 3, pp. 257-273
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For $\alpha \in (1,2)$ we consider the equation $\partial _t u = \varDelta ^{\alpha /2} u + b \cdot \nabla u$, where $b$ is a time-independent, divergence-free singular vector field of the Morrey class $M_1^{1-\alpha }$. We show that if the Morrey norm
$\| b\| _{M_1^{1-\alpha }}$ is sufficiently small, then the fundamental solution is globally in time comparable with the density of the isotropic stable process.
Keywords:
alpha consider equation partial vardelta alpha cdot nabla where time independent divergence free singular vector field morrey class alpha morrey norm alpha sufficiently small fundamental solution globally time comparable density isotropic stable process
Affiliations des auteurs :
Tomasz Jakubowski 1
@article{10_4064_sm207_3_3,
author = {Tomasz Jakubowski},
title = {Fractional {Laplacian} with singular drift},
journal = {Studia Mathematica},
pages = {257--273},
publisher = {mathdoc},
volume = {207},
number = {3},
year = {2011},
doi = {10.4064/sm207-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm207-3-3/}
}
Tomasz Jakubowski. Fractional Laplacian with singular drift. Studia Mathematica, Tome 207 (2011) no. 3, pp. 257-273. doi: 10.4064/sm207-3-3
Cité par Sources :