Growth of (frequently) hypercyclic functions
for differential operators
Studia Mathematica, Tome 207 (2011) no. 2, pp. 97-115
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We investigate the conjugate indicator diagram or, equivalently, the indicator function of (frequently) hypercyclic functions of exponential type for differential operators. This gives insights into growth conditions for these functions on particular rays or sectors. Our research extends known results in several respects.
Keywords:
investigate conjugate indicator diagram equivalently indicator function frequently hypercyclic functions exponential type differential operators gives insights growth conditions these functions particular rays sectors research extends known results several respects
Affiliations des auteurs :
Hans-Peter Beise 1 ; Jürgen Müller 1
@article{10_4064_sm207_2_1,
author = {Hans-Peter Beise and J\"urgen M\"uller},
title = {Growth of (frequently) hypercyclic functions
for differential operators},
journal = {Studia Mathematica},
pages = {97--115},
year = {2011},
volume = {207},
number = {2},
doi = {10.4064/sm207-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm207-2-1/}
}
TY - JOUR AU - Hans-Peter Beise AU - Jürgen Müller TI - Growth of (frequently) hypercyclic functions for differential operators JO - Studia Mathematica PY - 2011 SP - 97 EP - 115 VL - 207 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm207-2-1/ DO - 10.4064/sm207-2-1 LA - en ID - 10_4064_sm207_2_1 ER -
Hans-Peter Beise; Jürgen Müller. Growth of (frequently) hypercyclic functions for differential operators. Studia Mathematica, Tome 207 (2011) no. 2, pp. 97-115. doi: 10.4064/sm207-2-1
Cité par Sources :