Growth of (frequently) hypercyclic functions for differential operators
Studia Mathematica, Tome 207 (2011) no. 2, pp. 97-115

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We investigate the conjugate indicator diagram or, equivalently, the indicator function of (frequently) hypercyclic functions of exponential type for differential operators. This gives insights into growth conditions for these functions on particular rays or sectors. Our research extends known results in several respects.
DOI : 10.4064/sm207-2-1
Keywords: investigate conjugate indicator diagram equivalently indicator function frequently hypercyclic functions exponential type differential operators gives insights growth conditions these functions particular rays sectors research extends known results several respects

Hans-Peter Beise 1 ; Jürgen Müller 1

1 FB IV, Mathematics University of Trier D-54286 Trier, Germany
@article{10_4064_sm207_2_1,
     author = {Hans-Peter Beise and J\"urgen M\"uller},
     title = {Growth of (frequently) hypercyclic functions
 for differential operators},
     journal = {Studia Mathematica},
     pages = {97--115},
     publisher = {mathdoc},
     volume = {207},
     number = {2},
     year = {2011},
     doi = {10.4064/sm207-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm207-2-1/}
}
TY  - JOUR
AU  - Hans-Peter Beise
AU  - Jürgen Müller
TI  - Growth of (frequently) hypercyclic functions
 for differential operators
JO  - Studia Mathematica
PY  - 2011
SP  - 97
EP  - 115
VL  - 207
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm207-2-1/
DO  - 10.4064/sm207-2-1
LA  - en
ID  - 10_4064_sm207_2_1
ER  - 
%0 Journal Article
%A Hans-Peter Beise
%A Jürgen Müller
%T Growth of (frequently) hypercyclic functions
 for differential operators
%J Studia Mathematica
%D 2011
%P 97-115
%V 207
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm207-2-1/
%R 10.4064/sm207-2-1
%G en
%F 10_4064_sm207_2_1
Hans-Peter Beise; Jürgen Müller. Growth of (frequently) hypercyclic functions
 for differential operators. Studia Mathematica, Tome 207 (2011) no. 2, pp. 97-115. doi: 10.4064/sm207-2-1

Cité par Sources :