Power means and the reverse Hölder inequality
Studia Mathematica, Tome 207 (2011) no. 1, pp. 85-95

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $w$ be a non-negative measurable function defined on the positive semi-axis and satisfying the reverse Hölder inequality with exponents $0\alpha\beta$. In the present paper, sharp estimates of the compositions of the power means $\mathcal{P}_\alpha w(x):=((1/x)\int_0^x w^\alpha(t)\,dt)^{1/\alpha}$, $x>0$, are obtained for various exponents $\alpha$. As a result, for the function $w$ a property of self-improvement of summability exponents is established.
DOI : 10.4064/sm207-1-6
Keywords: non negative measurable function defined positive semi axis satisfying reverse lder inequality exponents alpha beta present paper sharp estimates compositions power means mathcal alpha int alpha alpha obtained various exponents alpha result function property self improvement summability exponents established

Victor D. Didenko 1 ; Anatolii A. Korenovskyi 2

1 University of Brunei Darussalam BE1410 Bandar Seri Begawan, Brunei
2 Odessa I. I. Mechnikov National University Dvoryanskaya 2 65026 Odessa, Ukraine
@article{10_4064_sm207_1_6,
     author = {Victor D. Didenko and Anatolii A. Korenovskyi},
     title = {Power means and the reverse {H\"older} inequality},
     journal = {Studia Mathematica},
     pages = {85--95},
     publisher = {mathdoc},
     volume = {207},
     number = {1},
     year = {2011},
     doi = {10.4064/sm207-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm207-1-6/}
}
TY  - JOUR
AU  - Victor D. Didenko
AU  - Anatolii A. Korenovskyi
TI  - Power means and the reverse Hölder inequality
JO  - Studia Mathematica
PY  - 2011
SP  - 85
EP  - 95
VL  - 207
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm207-1-6/
DO  - 10.4064/sm207-1-6
LA  - en
ID  - 10_4064_sm207_1_6
ER  - 
%0 Journal Article
%A Victor D. Didenko
%A Anatolii A. Korenovskyi
%T Power means and the reverse Hölder inequality
%J Studia Mathematica
%D 2011
%P 85-95
%V 207
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm207-1-6/
%R 10.4064/sm207-1-6
%G en
%F 10_4064_sm207_1_6
Victor D. Didenko; Anatolii A. Korenovskyi. Power means and the reverse Hölder inequality. Studia Mathematica, Tome 207 (2011) no. 1, pp. 85-95. doi: 10.4064/sm207-1-6

Cité par Sources :