On the fixed points of nonexpansive mappings
in direct sums of Banach spaces
Studia Mathematica, Tome 207 (2011) no. 1, pp. 75-84
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We show that if a Banach space $X$ has the weak fixed point property for nonexpansive mappings and $Y$ has the generalized Gossez–Lami Dozo property or is uniformly convex in every direction, then the direct sum $X\oplus Y$ with a strictly monotone norm has the weak fixed point property. The result is new even if $Y$ is finite-dimensional.
Keywords:
banach space has weak fixed point property nonexpansive mappings has generalized gossez lami dozo property uniformly convex every direction direct sum oplus strictly monotone norm has weak fixed point property result even finite dimensional
Affiliations des auteurs :
Andrzej Wiśnicki 1
@article{10_4064_sm207_1_5,
author = {Andrzej Wi\'snicki},
title = {On the fixed points of nonexpansive mappings
in direct sums of {Banach} spaces},
journal = {Studia Mathematica},
pages = {75--84},
year = {2011},
volume = {207},
number = {1},
doi = {10.4064/sm207-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm207-1-5/}
}
Andrzej Wiśnicki. On the fixed points of nonexpansive mappings in direct sums of Banach spaces. Studia Mathematica, Tome 207 (2011) no. 1, pp. 75-84. doi: 10.4064/sm207-1-5
Cité par Sources :