Growth of semigroups in discrete and continuous time
Studia Mathematica, Tome 206 (2011) no. 3, pp. 273-292
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We show that the growth rates of solutions of the abstract differential equations $\dot{x}(t) = A x(t)$, $\dot{x}(t)= A^{-1} x(t)$, and the difference equation $x_d(n+1) = (A+I)(A-I)^{-1} x_d(n)$ are closely related. Assuming that $A$ generates an exponentially stable semigroup, we show that on a general Banach space the lowest growth rate of the semigroup $(e^{A^{-1}t})_{t \geq 0}$ is $O(\sqrt[4]{t})$, and for $( (A+I)(A-I)^{-1})^n$ it is $O(\sqrt[4]{n})$. The similarity in growth holds for all Banach spaces. In particular, for Hilbert spaces the best estimates are $O(\log(t))$ and $O(\log(n))$, respectively. Furthermore, we give conditions on $A$ such that the growth rate of $( (A+I)(A-I)^{-1})^n$ is $O(1)$, i.e., the operator is power bounded.
DOI : 10.4064/sm206-3-3
Keywords: growth rates solutions abstract differential equations dot dot difference equation a i closely related assuming generates exponentially stable semigroup general banach space lowest growth rate semigroup geq sqrt a i sqrt similarity growth holds banach spaces particular hilbert spaces best estimates log log respectively furthermore conditions growth rate a i operator power bounded

Alexander Gomilko  1   ; Hans Zwart  2   ; Niels Besseling  3

1 Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toruń, Poland
2 Department of Applied Mathematics University of Twente P.O. 217 7500 AE, Enschede, The Netherlands
3 Department of Applied Mathematics University of Twente P.O. 217 7500 AE, Enschede The Netherlands
@article{10_4064_sm206_3_3,
     author = {Alexander Gomilko and Hans Zwart and Niels Besseling},
     title = {Growth of semigroups in discrete and continuous time},
     journal = {Studia Mathematica},
     pages = {273--292},
     year = {2011},
     volume = {206},
     number = {3},
     doi = {10.4064/sm206-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm206-3-3/}
}
TY  - JOUR
AU  - Alexander Gomilko
AU  - Hans Zwart
AU  - Niels Besseling
TI  - Growth of semigroups in discrete and continuous time
JO  - Studia Mathematica
PY  - 2011
SP  - 273
EP  - 292
VL  - 206
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm206-3-3/
DO  - 10.4064/sm206-3-3
LA  - en
ID  - 10_4064_sm206_3_3
ER  - 
%0 Journal Article
%A Alexander Gomilko
%A Hans Zwart
%A Niels Besseling
%T Growth of semigroups in discrete and continuous time
%J Studia Mathematica
%D 2011
%P 273-292
%V 206
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm206-3-3/
%R 10.4064/sm206-3-3
%G en
%F 10_4064_sm206_3_3
Alexander Gomilko; Hans Zwart; Niels Besseling. Growth of semigroups in discrete and continuous time. Studia Mathematica, Tome 206 (2011) no. 3, pp. 273-292. doi: 10.4064/sm206-3-3

Cité par Sources :