1Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toruń, Poland 2Department of Applied Mathematics University of Twente P.O. 217 7500 AE, Enschede, The Netherlands 3Department of Applied Mathematics University of Twente P.O. 217 7500 AE, Enschede The Netherlands
Studia Mathematica, Tome 206 (2011) no. 3, pp. 273-292
We show that the growth rates of solutions of the abstract differential equations $\dot{x}(t) = A x(t)$, $\dot{x}(t)= A^{-1} x(t)$,
and the difference equation $x_d(n+1) = (A+I)(A-I)^{-1} x_d(n)$ are closely related. Assuming that $A$ generates an exponentially stable semigroup,
we show that on a general Banach space the lowest growth rate of the semigroup $(e^{A^{-1}t})_{t \geq 0}$ is $O(\sqrt[4]{t})$,
and for $( (A+I)(A-I)^{-1})^n$ it is $O(\sqrt[4]{n})$. The similarity in growth holds for all Banach spaces. In particular,
for Hilbert spaces the best estimates
are $O(\log(t))$ and $O(\log(n))$, respectively. Furthermore, we give conditions on $A$ such that the growth rate of
$( (A+I)(A-I)^{-1})^n$ is $O(1)$, i.e., the operator is power bounded.
Keywords:
growth rates solutions abstract differential equations dot dot difference equation a i closely related assuming generates exponentially stable semigroup general banach space lowest growth rate semigroup geq sqrt a i sqrt similarity growth holds banach spaces particular hilbert spaces best estimates log log respectively furthermore conditions growth rate a i operator power bounded
Affiliations des auteurs :
Alexander Gomilko 
1
;
Hans Zwart 
2
;
Niels Besseling 
3
1
Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toruń, Poland
2
Department of Applied Mathematics University of Twente P.O. 217 7500 AE, Enschede, The Netherlands
3
Department of Applied Mathematics University of Twente P.O. 217 7500 AE, Enschede The Netherlands
@article{10_4064_sm206_3_3,
author = {Alexander Gomilko and Hans Zwart and Niels Besseling},
title = {Growth of semigroups in discrete and continuous time},
journal = {Studia Mathematica},
pages = {273--292},
year = {2011},
volume = {206},
number = {3},
doi = {10.4064/sm206-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm206-3-3/}
}
TY - JOUR
AU - Alexander Gomilko
AU - Hans Zwart
AU - Niels Besseling
TI - Growth of semigroups in discrete and continuous time
JO - Studia Mathematica
PY - 2011
SP - 273
EP - 292
VL - 206
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm206-3-3/
DO - 10.4064/sm206-3-3
LA - en
ID - 10_4064_sm206_3_3
ER -
%0 Journal Article
%A Alexander Gomilko
%A Hans Zwart
%A Niels Besseling
%T Growth of semigroups in discrete and continuous time
%J Studia Mathematica
%D 2011
%P 273-292
%V 206
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm206-3-3/
%R 10.4064/sm206-3-3
%G en
%F 10_4064_sm206_3_3
Alexander Gomilko; Hans Zwart; Niels Besseling. Growth of semigroups in discrete and continuous time. Studia Mathematica, Tome 206 (2011) no. 3, pp. 273-292. doi: 10.4064/sm206-3-3