Commutators on $(\sum \ell_q)_p$
Studia Mathematica, Tome 206 (2011) no. 2, pp. 175-190
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $T$ be a bounded linear operator on $X=(\sum \ell_{q})_{{p}}$ with $1\le q \infty$
and $1 p \infty$. Then $T$ is a commutator if and only if for all non-zero $\lambda\in \mathbb{C}$, the operator
$T-\lambda I$ is not $X$-strictly singular.
Keywords:
bounded linear operator sum ell infty infty commutator only non zero lambda mathbb operator t lambda x strictly singular
Affiliations des auteurs :
Dongyang Chen 1 ; William B. Johnson 2 ; Bentuo Zheng 3
@article{10_4064_sm206_2_5,
author = {Dongyang Chen and William B. Johnson and Bentuo Zheng},
title = {Commutators on $(\sum \ell_q)_p$},
journal = {Studia Mathematica},
pages = {175--190},
publisher = {mathdoc},
volume = {206},
number = {2},
year = {2011},
doi = {10.4064/sm206-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm206-2-5/}
}
TY - JOUR AU - Dongyang Chen AU - William B. Johnson AU - Bentuo Zheng TI - Commutators on $(\sum \ell_q)_p$ JO - Studia Mathematica PY - 2011 SP - 175 EP - 190 VL - 206 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm206-2-5/ DO - 10.4064/sm206-2-5 LA - en ID - 10_4064_sm206_2_5 ER -
Dongyang Chen; William B. Johnson; Bentuo Zheng. Commutators on $(\sum \ell_q)_p$. Studia Mathematica, Tome 206 (2011) no. 2, pp. 175-190. doi: 10.4064/sm206-2-5
Cité par Sources :