1School of Mathematical Sciences Xiamen University Xiamen, 361005, China 2Department of Mathematics Texas A&M University College Station, TX 77843, U.S.A. 3Department of Mathematical Sciences The University of Memphis Memphis, TN 38152, U.S.A.
Studia Mathematica, Tome 206 (2011) no. 2, pp. 175-190
Let $T$ be a bounded linear operator on $X=(\sum \ell_{q})_{{p}}$ with $1\le q \infty$
and $1 p \infty$. Then $T$ is a commutator if and only if for all non-zero $\lambda\in \mathbb{C}$, the operator
$T-\lambda I$ is not $X$-strictly singular.
Keywords:
bounded linear operator sum ell infty infty commutator only non zero lambda mathbb operator t lambda x strictly singular
Affiliations des auteurs :
Dongyang Chen 
1
;
William B. Johnson 
2
;
Bentuo Zheng 
3
1
School of Mathematical Sciences Xiamen University Xiamen, 361005, China
2
Department of Mathematics Texas A&M University College Station, TX 77843, U.S.A.
3
Department of Mathematical Sciences The University of Memphis Memphis, TN 38152, U.S.A.
@article{10_4064_sm206_2_5,
author = {Dongyang Chen and William B. Johnson and Bentuo Zheng},
title = {Commutators on $(\sum \ell_q)_p$},
journal = {Studia Mathematica},
pages = {175--190},
year = {2011},
volume = {206},
number = {2},
doi = {10.4064/sm206-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm206-2-5/}
}
TY - JOUR
AU - Dongyang Chen
AU - William B. Johnson
AU - Bentuo Zheng
TI - Commutators on $(\sum \ell_q)_p$
JO - Studia Mathematica
PY - 2011
SP - 175
EP - 190
VL - 206
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm206-2-5/
DO - 10.4064/sm206-2-5
LA - en
ID - 10_4064_sm206_2_5
ER -
%0 Journal Article
%A Dongyang Chen
%A William B. Johnson
%A Bentuo Zheng
%T Commutators on $(\sum \ell_q)_p$
%J Studia Mathematica
%D 2011
%P 175-190
%V 206
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm206-2-5/
%R 10.4064/sm206-2-5
%G en
%F 10_4064_sm206_2_5
Dongyang Chen; William B. Johnson; Bentuo Zheng. Commutators on $(\sum \ell_q)_p$. Studia Mathematica, Tome 206 (2011) no. 2, pp. 175-190. doi: 10.4064/sm206-2-5