Let
$\mathcal{L}$ be a subspace lattice
on a Banach space $X$ and let $\delta:\mathop{\mathrm{Alg}}\mathcal{L}\rightarrow B(X)$ be a linear
mapping.
If $\bigvee\{L\in \mathcal{L}: L_-\nsupseteq L\}=X$ or
$\bigwedge\{L_-:L\in \mathcal{L}, \, L_-\nsupseteq L\}=(0)$, we show that
the following three conditions are equivalent: (1)
$\delta(AB)=\delta(A)B+A\delta(B)$ whenever $AB=0$; (2)
$\delta(AB+BA)=\delta(A)B+A\delta(B)+\delta(B)A+B\delta(A)$ whenever
$AB+BA=0$; (3) $\delta$ is a generalized derivation and
$\delta(I)\in (\mathrm{Alg}\,\mathcal{L})^\prime$. If
$\bigvee\{L\in \mathcal{L}: L_-\nsupseteq L\}=X$ or
$\bigwedge\{L_-:L\in \mathcal{L}, L_-\nsupseteq L\}=(0)$ and $\delta$
satisfies
$\delta(AB+BA)=\delta(A)B+A\delta(B)+\delta(B)A+B\delta(A)$ whenever
$AB=0$,
we show that $\delta$ is a generalized derivation and
$\delta(I)A\in(\mathrm{Alg}\,\mathcal{L})^\prime$ for every $A\in
\mathrm{Alg}\,\mathcal{L}$. We also prove that if $\bigvee\{L\in
\mathcal{L}: L_-\nsupseteq L\}=X$ and $\bigwedge\{L_-:L\in \mathcal{L},\,
L_-\nsupseteq L\}=(0)$, then $\delta$ is a local generalized
derivation if and only if $\delta$ is a generalized derivation.
@article{10_4064_sm206_2_2,
author = {Yunhe Chen and Jiankui Li},
title = {Mappings on some reflexive algebras characterized by action
on zero products or {Jordan} zero products},
journal = {Studia Mathematica},
pages = {121--134},
year = {2011},
volume = {206},
number = {2},
doi = {10.4064/sm206-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm206-2-2/}
}
TY - JOUR
AU - Yunhe Chen
AU - Jiankui Li
TI - Mappings on some reflexive algebras characterized by action
on zero products or Jordan zero products
JO - Studia Mathematica
PY - 2011
SP - 121
EP - 134
VL - 206
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm206-2-2/
DO - 10.4064/sm206-2-2
LA - en
ID - 10_4064_sm206_2_2
ER -
%0 Journal Article
%A Yunhe Chen
%A Jiankui Li
%T Mappings on some reflexive algebras characterized by action
on zero products or Jordan zero products
%J Studia Mathematica
%D 2011
%P 121-134
%V 206
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm206-2-2/
%R 10.4064/sm206-2-2
%G en
%F 10_4064_sm206_2_2
Yunhe Chen; Jiankui Li. Mappings on some reflexive algebras characterized by action
on zero products or Jordan zero products. Studia Mathematica, Tome 206 (2011) no. 2, pp. 121-134. doi: 10.4064/sm206-2-2