Mappings on some reflexive algebras characterized by action on zero products or Jordan zero products
Studia Mathematica, Tome 206 (2011) no. 2, pp. 121-134

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\mathcal{L}$ be a subspace lattice on a Banach space $X$ and let $\delta:\mathop{\mathrm{Alg}}\mathcal{L}\rightarrow B(X)$ be a linear mapping. If $\bigvee\{L\in \mathcal{L}: L_-\nsupseteq L\}=X$ or $\bigwedge\{L_-:L\in \mathcal{L}, \, L_-\nsupseteq L\}=(0)$, we show that the following three conditions are equivalent: (1) $\delta(AB)=\delta(A)B+A\delta(B)$ whenever $AB=0$; (2) $\delta(AB+BA)=\delta(A)B+A\delta(B)+\delta(B)A+B\delta(A)$ whenever $AB+BA=0$; (3) $\delta$ is a generalized derivation and $\delta(I)\in (\mathrm{Alg}\,\mathcal{L})^\prime$. If $\bigvee\{L\in \mathcal{L}: L_-\nsupseteq L\}=X$ or $\bigwedge\{L_-:L\in \mathcal{L}, L_-\nsupseteq L\}=(0)$ and $\delta$ satisfies $\delta(AB+BA)=\delta(A)B+A\delta(B)+\delta(B)A+B\delta(A)$ whenever $AB=0$, we show that $\delta$ is a generalized derivation and $\delta(I)A\in(\mathrm{Alg}\,\mathcal{L})^\prime$ for every $A\in \mathrm{Alg}\,\mathcal{L}$. We also prove that if $\bigvee\{L\in \mathcal{L}: L_-\nsupseteq L\}=X$ and $\bigwedge\{L_-:L\in \mathcal{L},\, L_-\nsupseteq L\}=(0)$, then $\delta$ is a local generalized derivation if and only if $\delta$ is a generalized derivation.
DOI : 10.4064/sm206-2-2
Keywords: mathcal subspace lattice banach space delta mathop mathrm alg mathcal rightarrow linear mapping bigvee mathcal nsupseteq bigwedge mathcal nsupseteq following three conditions equivalent delta delta delta whenever delta delta delta delta delta whenever delta generalized derivation delta mathrm alg mathcal prime bigvee mathcal nsupseteq bigwedge mathcal nsupseteq delta satisfies delta delta delta delta delta whenever delta generalized derivation delta mathrm alg mathcal prime every mathrm alg mathcal prove bigvee mathcal nsupseteq bigwedge mathcal nsupseteq delta local generalized derivation only delta generalized derivation

Yunhe Chen 1 ; Jiankui Li 1

1 Department of Mathematics East China University of Science and Technology Shanghai 200237, People's Republic of China
@article{10_4064_sm206_2_2,
     author = {Yunhe Chen and Jiankui Li},
     title = {Mappings on some reflexive algebras characterized by action
on zero products or {Jordan} zero products},
     journal = {Studia Mathematica},
     pages = {121--134},
     publisher = {mathdoc},
     volume = {206},
     number = {2},
     year = {2011},
     doi = {10.4064/sm206-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm206-2-2/}
}
TY  - JOUR
AU  - Yunhe Chen
AU  - Jiankui Li
TI  - Mappings on some reflexive algebras characterized by action
on zero products or Jordan zero products
JO  - Studia Mathematica
PY  - 2011
SP  - 121
EP  - 134
VL  - 206
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm206-2-2/
DO  - 10.4064/sm206-2-2
LA  - en
ID  - 10_4064_sm206_2_2
ER  - 
%0 Journal Article
%A Yunhe Chen
%A Jiankui Li
%T Mappings on some reflexive algebras characterized by action
on zero products or Jordan zero products
%J Studia Mathematica
%D 2011
%P 121-134
%V 206
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm206-2-2/
%R 10.4064/sm206-2-2
%G en
%F 10_4064_sm206_2_2
Yunhe Chen; Jiankui Li. Mappings on some reflexive algebras characterized by action
on zero products or Jordan zero products. Studia Mathematica, Tome 206 (2011) no. 2, pp. 121-134. doi: 10.4064/sm206-2-2

Cité par Sources :