Mappings on some reflexive algebras characterized by action
on zero products or Jordan zero products
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 206 (2011) no. 2, pp. 121-134
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let
 $\mathcal{L}$ be  a subspace lattice
 on a Banach space $X$ and let $\delta:\mathop{\mathrm{Alg}}\mathcal{L}\rightarrow B(X)$ be a linear
 mapping.
If $\bigvee\{L\in \mathcal{L}: L_-\nsupseteq L\}=X$ or
$\bigwedge\{L_-:L\in \mathcal{L}, \, L_-\nsupseteq L\}=(0)$, we show that
the following three conditions are equivalent: (1)
$\delta(AB)=\delta(A)B+A\delta(B)$ whenever  $AB=0$; (2)
$\delta(AB+BA)=\delta(A)B+A\delta(B)+\delta(B)A+B\delta(A)$ whenever
$AB+BA=0$; (3) $\delta$ is a generalized derivation and
$\delta(I)\in (\mathrm{Alg}\,\mathcal{L})^\prime$. If
  $\bigvee\{L\in \mathcal{L}: L_-\nsupseteq L\}=X$ or
$\bigwedge\{L_-:L\in \mathcal{L},  L_-\nsupseteq L\}=(0)$ and  $\delta$
satisfies
$\delta(AB+BA)=\delta(A)B+A\delta(B)+\delta(B)A+B\delta(A)$ whenever
$AB=0$,
 we show that  $\delta$ is a generalized derivation and
$\delta(I)A\in(\mathrm{Alg}\,\mathcal{L})^\prime$ for every $A\in
\mathrm{Alg}\,\mathcal{L}$. We also prove that if $\bigvee\{L\in
\mathcal{L}: L_-\nsupseteq L\}=X$ and $\bigwedge\{L_-:L\in \mathcal{L},\,
  L_-\nsupseteq L\}=(0)$, then $\delta$ is a local generalized
derivation if and only if $\delta$ is a generalized derivation.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
mathcal subspace lattice banach space delta mathop mathrm alg mathcal rightarrow linear mapping bigvee mathcal nsupseteq bigwedge mathcal nsupseteq following three conditions equivalent delta delta delta whenever delta delta delta delta delta whenever delta generalized derivation delta mathrm alg mathcal prime bigvee mathcal nsupseteq bigwedge mathcal nsupseteq delta satisfies delta delta delta delta delta whenever delta generalized derivation delta mathrm alg mathcal prime every mathrm alg mathcal prove bigvee mathcal nsupseteq bigwedge mathcal nsupseteq delta local generalized derivation only delta generalized derivation
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Yunhe Chen 1 ; Jiankui Li 1
@article{10_4064_sm206_2_2,
     author = {Yunhe Chen and Jiankui Li},
     title = {Mappings on some reflexive algebras characterized by action
on zero products or {Jordan} zero products},
     journal = {Studia Mathematica},
     pages = {121--134},
     publisher = {mathdoc},
     volume = {206},
     number = {2},
     year = {2011},
     doi = {10.4064/sm206-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm206-2-2/}
}
                      
                      
                    TY - JOUR AU - Yunhe Chen AU - Jiankui Li TI - Mappings on some reflexive algebras characterized by action on zero products or Jordan zero products JO - Studia Mathematica PY - 2011 SP - 121 EP - 134 VL - 206 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm206-2-2/ DO - 10.4064/sm206-2-2 LA - en ID - 10_4064_sm206_2_2 ER -
%0 Journal Article %A Yunhe Chen %A Jiankui Li %T Mappings on some reflexive algebras characterized by action on zero products or Jordan zero products %J Studia Mathematica %D 2011 %P 121-134 %V 206 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm206-2-2/ %R 10.4064/sm206-2-2 %G en %F 10_4064_sm206_2_2
Yunhe Chen; Jiankui Li. Mappings on some reflexive algebras characterized by action on zero products or Jordan zero products. Studia Mathematica, Tome 206 (2011) no. 2, pp. 121-134. doi: 10.4064/sm206-2-2
Cité par Sources :
