Involutions on the second duals of group algebras versus subamenable groups
Studia Mathematica, Tome 206 (2011) no. 1, pp. 51-62

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $L^1 (G)^{\ast \ast }$ be the second dual of the group algebra $L^1(G)$ of a locally compact group $G$. We study the question of involutions on $L^1 (G)^{\ast \ast }$. A new class of subamenable groups is introduced which is universal for all groups. There is no involution on $L^1(G)^{\ast \ast }$ for a subamenable group $G$.
DOI : 10.4064/sm206-1-4
Keywords: ast ast second dual group algebra locally compact group study question involutions ast ast class subamenable groups introduced which universal groups there involution ast ast subamenable group

Ajit Iqbal Singh 1

1 Theoretical Statistics and Mathematics Unit Indian Statistical Institute 7 S. J. S. Sansanwal Marg New Delhi-110 016, India
@article{10_4064_sm206_1_4,
     author = {Ajit Iqbal Singh},
     title = {Involutions on the second duals of group algebras
 versus subamenable groups},
     journal = {Studia Mathematica},
     pages = {51--62},
     publisher = {mathdoc},
     volume = {206},
     number = {1},
     year = {2011},
     doi = {10.4064/sm206-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm206-1-4/}
}
TY  - JOUR
AU  - Ajit Iqbal Singh
TI  - Involutions on the second duals of group algebras
 versus subamenable groups
JO  - Studia Mathematica
PY  - 2011
SP  - 51
EP  - 62
VL  - 206
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm206-1-4/
DO  - 10.4064/sm206-1-4
LA  - en
ID  - 10_4064_sm206_1_4
ER  - 
%0 Journal Article
%A Ajit Iqbal Singh
%T Involutions on the second duals of group algebras
 versus subamenable groups
%J Studia Mathematica
%D 2011
%P 51-62
%V 206
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm206-1-4/
%R 10.4064/sm206-1-4
%G en
%F 10_4064_sm206_1_4
Ajit Iqbal Singh. Involutions on the second duals of group algebras
 versus subamenable groups. Studia Mathematica, Tome 206 (2011) no. 1, pp. 51-62. doi: 10.4064/sm206-1-4

Cité par Sources :