Haar measure and continuous representations of locally compact abelian groups
Studia Mathematica, Tome 206 (2011) no. 1, pp. 25-35
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $\mathcal{L}(X)$ be the algebra of all bounded operators on a Banach space $X$, and let
$\theta:G\rightarrow \mathcal{L}(X)$ be a strongly continuous representation of a locally compact and second countable abelian group $G$ on $X$.
Set $\sigma^1(\theta(g)):=\{\lambda/|\lambda|\mid
\lambda\in\sigma(\theta(g))\}$, where $\sigma(\theta(g))$ is the spectrum of $\theta(g)$,
and let $\varSigma_\theta$ be the set of all $g\in G$ such that $\sigma^1(\theta(g))$ does not contain any regular polygon of $\mathbb{T}$
(by a regular polygon we mean the image under a rotation of a closed subgroup of the unit circle $\mathbb{T}$ different from $\{1\}$).
We prove that $\theta$ is uniformly continuous if and only if $\varSigma_\theta$ is a non-null set for the Haar measure on $G$.
Keywords:
mathcal algebra bounded operators banach space theta rightarrow mathcal strongly continuous representation locally compact second countable abelian group set sigma theta lambda lambda mid lambda sigma theta where sigma theta spectrum theta varsigma theta set sigma theta does contain regular polygon mathbb regular polygon mean image under rotation closed subgroup unit circle mathbb different prove theta uniformly continuous only varsigma theta non null set haar measure
Affiliations des auteurs :
Jean-Christophe Tomasi 1
@article{10_4064_sm206_1_2,
author = {Jean-Christophe Tomasi},
title = {Haar measure and continuous representations of locally compact abelian groups},
journal = {Studia Mathematica},
pages = {25--35},
year = {2011},
volume = {206},
number = {1},
doi = {10.4064/sm206-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm206-1-2/}
}
TY - JOUR AU - Jean-Christophe Tomasi TI - Haar measure and continuous representations of locally compact abelian groups JO - Studia Mathematica PY - 2011 SP - 25 EP - 35 VL - 206 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm206-1-2/ DO - 10.4064/sm206-1-2 LA - en ID - 10_4064_sm206_1_2 ER -
Jean-Christophe Tomasi. Haar measure and continuous representations of locally compact abelian groups. Studia Mathematica, Tome 206 (2011) no. 1, pp. 25-35. doi: 10.4064/sm206-1-2
Cité par Sources :