Bilinear operators associated with Schrödinger operators
Studia Mathematica, Tome 205 (2011) no. 3, pp. 281-295

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $L=-\Delta+V$ be a Schrödinger operator in $\Bbb R^d$ and $H^1_L(\Bbb R^d)$ be the Hardy type space associated to $L$. We investigate the bilinear operators $T^+$ and $T^-$ defined by $$T^{\pm}(f,g)(x)=(T_1f)(x)(T_2g)(x)\pm(T_2f)(x)(T_1g)(x),$$ where $T_1$ and $T_2$ are Calderón–Zygmund operators related to $L$. Under some general conditions, we prove that either $T^+$ or $T^-$ is bounded from $L^p(\Bbb R^d)\times L^q(\Bbb R^d)$ to $H^1_L(\Bbb R^d)$ for $1 p,q \infty$ with ${1}/{p}+{1}/{q}=1$. Several examples satisfying these conditions are given. We also give a counterexample for which the classical Hardy space estimate fails.
DOI : 10.4064/sm205-3-4
Keywords: delta schr dinger operator bbb bbb hardy type space associated investigate bilinear operators defined where calder zygmund operators related under general conditions prove either bounded bbb times bbb bbb infty several examples satisfying these conditions given counterexample which classical hardy space estimate fails

Chin-Cheng Lin 1 ; Ying-Chieh Lin 1 ; Heping Liu 2 ; Yu Liu 3

1 Department of Mathematics National Central University Chung-Li 320, Taiwan
2 LMAM, School of Mathematical Sciences Peking University Beijing 100871, China
3 School of Mathematics and Physics University of Science and Technology Beijing Beijing 100083, China
@article{10_4064_sm205_3_4,
     author = {Chin-Cheng Lin and Ying-Chieh Lin and Heping Liu and Yu Liu},
     title = {Bilinear operators associated with {Schr\"odinger} operators},
     journal = {Studia Mathematica},
     pages = {281--295},
     publisher = {mathdoc},
     volume = {205},
     number = {3},
     year = {2011},
     doi = {10.4064/sm205-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm205-3-4/}
}
TY  - JOUR
AU  - Chin-Cheng Lin
AU  - Ying-Chieh Lin
AU  - Heping Liu
AU  - Yu Liu
TI  - Bilinear operators associated with Schrödinger operators
JO  - Studia Mathematica
PY  - 2011
SP  - 281
EP  - 295
VL  - 205
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm205-3-4/
DO  - 10.4064/sm205-3-4
LA  - en
ID  - 10_4064_sm205_3_4
ER  - 
%0 Journal Article
%A Chin-Cheng Lin
%A Ying-Chieh Lin
%A Heping Liu
%A Yu Liu
%T Bilinear operators associated with Schrödinger operators
%J Studia Mathematica
%D 2011
%P 281-295
%V 205
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm205-3-4/
%R 10.4064/sm205-3-4
%G en
%F 10_4064_sm205_3_4
Chin-Cheng Lin; Ying-Chieh Lin; Heping Liu; Yu Liu. Bilinear operators associated with Schrödinger operators. Studia Mathematica, Tome 205 (2011) no. 3, pp. 281-295. doi: 10.4064/sm205-3-4

Cité par Sources :