The Lebesgue constant for the periodic Franklin system
Studia Mathematica, Tome 205 (2011) no. 3, pp. 251-279

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We identify the torus with the unit interval $[0,1)$ and let $n,\nu\in\mathbb{N}$ with $0\leq \nu\leq n-1$ and $N:=n+\nu$. Then we define the (partially equally spaced) knots \[ t_{j}=\begin{cases} {j}/({2n})\text{for $j=0,\ldots,2\nu$,}\\ ({j-\nu})/{n}\text{for $j=2\nu+1,\ldots,N-1$.} \end{cases} \] Furthermore, given $n,\nu$ we let $V_{n,\nu}$ be the space of piecewise linear continuous functions on the torus with knots $\{t_j:0\leq j\leq N-1\}$. Finally, let $P_{n,\nu}$ be the orthogonal projection operator from $L^{2}([0,1))$ onto $V_{n,\nu}.$ The main result is \begin{align*} \lim_{n\rightarrow\infty,\,\nu=1}\|P_{n,\nu}:L^\infty\rightarrow L^\infty\| =\sup_{n\in\mathbb{N},\,0\leq \nu \leq n}\|P_{n,\nu}:L^\infty\rightarrow L^\infty\| =2+\frac{33-18\sqrt{3}}{13}. \end{align*} This shows in particular that the Lebesgue constant of the classical Franklin orthonormal system on the torus is $2+\frac{33-18\sqrt{3}}{13}$.
DOI : 10.4064/sm205-3-3
Mots-clés : identify torus unit interval mathbb leq leq n define partially equally spaced knots begin cases text ldots j text ldots n end cases furthermore given space piecewise linear continuous functions torus knots leq leq n finally orthogonal projection operator main result begin align* lim rightarrow infty infty rightarrow infty sup mathbb leq leq infty rightarrow infty frac sqrt end align* shows particular lebesgue constant classical franklin orthonormal system torus frac sqrt

Markus Passenbrunner 1

1 Department of Analysis J. Kepler University Altenberger Strasse 69 A-4040 Linz, Austria
@article{10_4064_sm205_3_3,
     author = {Markus Passenbrunner},
     title = {The {Lebesgue} constant for the periodic {Franklin} system},
     journal = {Studia Mathematica},
     pages = {251--279},
     publisher = {mathdoc},
     volume = {205},
     number = {3},
     year = {2011},
     doi = {10.4064/sm205-3-3},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm205-3-3/}
}
TY  - JOUR
AU  - Markus Passenbrunner
TI  - The Lebesgue constant for the periodic Franklin system
JO  - Studia Mathematica
PY  - 2011
SP  - 251
EP  - 279
VL  - 205
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm205-3-3/
DO  - 10.4064/sm205-3-3
LA  - de
ID  - 10_4064_sm205_3_3
ER  - 
%0 Journal Article
%A Markus Passenbrunner
%T The Lebesgue constant for the periodic Franklin system
%J Studia Mathematica
%D 2011
%P 251-279
%V 205
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm205-3-3/
%R 10.4064/sm205-3-3
%G de
%F 10_4064_sm205_3_3
Markus Passenbrunner. The Lebesgue constant for the periodic Franklin system. Studia Mathematica, Tome 205 (2011) no. 3, pp. 251-279. doi: 10.4064/sm205-3-3

Cité par Sources :