The Lebesgue constant for the periodic Franklin system
Studia Mathematica, Tome 205 (2011) no. 3, pp. 251-279
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We identify the torus with the unit interval $[0,1)$ and let $n,\nu\in\mathbb{N}$ with $0\leq \nu\leq n-1$ and $N:=n+\nu$. Then we define the (partially equally spaced) knots
\[
t_{j}=\begin{cases}
{j}/({2n})\text{for $j=0,\ldots,2\nu$,}\\
({j-\nu})/{n}\text{for $j=2\nu+1,\ldots,N-1$.}
\end{cases}
\]
Furthermore, given $n,\nu$ we let $V_{n,\nu}$ be the space of piecewise linear continuous functions on the torus with knots $\{t_j:0\leq j\leq N-1\}$. Finally, let $P_{n,\nu}$ be the orthogonal projection operator from $L^{2}([0,1))$ onto
$V_{n,\nu}.$ The main result is
\begin{align*}
\lim_{n\rightarrow\infty,\,\nu=1}\|P_{n,\nu}:L^\infty\rightarrow L^\infty\|
=\sup_{n\in\mathbb{N},\,0\leq \nu
\leq n}\|P_{n,\nu}:L^\infty\rightarrow L^\infty\|
=2+\frac{33-18\sqrt{3}}{13}.
\end{align*}
This shows in particular that the Lebesgue constant of the classical Franklin orthonormal system on the torus is $2+\frac{33-18\sqrt{3}}{13}$.
Mots-clés :
identify torus unit interval mathbb leq leq n define partially equally spaced knots begin cases text ldots j text ldots n end cases furthermore given space piecewise linear continuous functions torus knots leq leq n finally orthogonal projection operator main result begin align* lim rightarrow infty infty rightarrow infty sup mathbb leq leq infty rightarrow infty frac sqrt end align* shows particular lebesgue constant classical franklin orthonormal system torus frac sqrt
Affiliations des auteurs :
Markus Passenbrunner 1
@article{10_4064_sm205_3_3,
author = {Markus Passenbrunner},
title = {The {Lebesgue} constant for the periodic {Franklin} system},
journal = {Studia Mathematica},
pages = {251--279},
publisher = {mathdoc},
volume = {205},
number = {3},
year = {2011},
doi = {10.4064/sm205-3-3},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm205-3-3/}
}
Markus Passenbrunner. The Lebesgue constant for the periodic Franklin system. Studia Mathematica, Tome 205 (2011) no. 3, pp. 251-279. doi: 10.4064/sm205-3-3
Cité par Sources :