Operator ideal properties of vector measures with finite variation
Studia Mathematica, Tome 205 (2011) no. 3, pp. 215-249

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given a vector measure $m$ with values in a Banach space $X$, a desirable property (when available) of the associated Banach function space $L^1 (m)$ of all $m$-integrable functions is that $L^1 (m)= L^1(|m|)$, where $|m|$ is the $[0,\infty ]$-valued variation measure of $m$. Closely connected to $m$ is its $X$-valued integration map $ I_m : f \mapsto \int f \, d m $ for $f \in L^1 (m)$. Many traditional operators from analysis arise as integration maps in this way. A detailed study is made of the connection between the property $L^1 (m)= L^1(|m|)$ and the membership of $I_m$ in various classical operator ideals (e.g., the compact, $p$-summing, completely continuous operators). Depending on which operator ideal is under consideration, the geometric nature of the Banach space $X$ may also play a crucial role. Of particular importance in this regard is whether or not $X$ contains an isomorphic copy of the classical sequence space $\ell ^1$. The compact range property of $X$ is also relevant.
DOI : 10.4064/sm205-3-2
Keywords: given vector measure values banach space desirable property available associated banach function space m integrable functions where infty valued variation measure closely connected its x valued integration map mapsto int many traditional operators analysis arise integration maps detailed study made connection between property membership various classical operator ideals compact p summing completely continuous operators depending which operator ideal under consideration geometric nature banach space may play crucial role particular importance regard whether contains isomorphic copy classical sequence space ell compact range property relevant

Susumu Okada 1 ; Werner J. Ricker 2 ; Luis Rodríguez-Piazza 3

1 112 Marconi Crescent Kambah, ACT 2902, Australia
2 Math.-Geogr. Fakultät Katholische Universität Eichstätt-Ingolstadt D-85072 Eichstätt, Germany
3 Facultad de Matemáticas Universidad de Sevilla Aptdo 1160 E-41080 Sevilla, Spain
@article{10_4064_sm205_3_2,
     author = {Susumu Okada and Werner J. Ricker and Luis Rodr{\'\i}guez-Piazza},
     title = {Operator ideal properties of vector
 measures with finite variation},
     journal = {Studia Mathematica},
     pages = {215--249},
     publisher = {mathdoc},
     volume = {205},
     number = {3},
     year = {2011},
     doi = {10.4064/sm205-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm205-3-2/}
}
TY  - JOUR
AU  - Susumu Okada
AU  - Werner J. Ricker
AU  - Luis Rodríguez-Piazza
TI  - Operator ideal properties of vector
 measures with finite variation
JO  - Studia Mathematica
PY  - 2011
SP  - 215
EP  - 249
VL  - 205
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm205-3-2/
DO  - 10.4064/sm205-3-2
LA  - en
ID  - 10_4064_sm205_3_2
ER  - 
%0 Journal Article
%A Susumu Okada
%A Werner J. Ricker
%A Luis Rodríguez-Piazza
%T Operator ideal properties of vector
 measures with finite variation
%J Studia Mathematica
%D 2011
%P 215-249
%V 205
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm205-3-2/
%R 10.4064/sm205-3-2
%G en
%F 10_4064_sm205_3_2
Susumu Okada; Werner J. Ricker; Luis Rodríguez-Piazza. Operator ideal properties of vector
 measures with finite variation. Studia Mathematica, Tome 205 (2011) no. 3, pp. 215-249. doi: 10.4064/sm205-3-2

Cité par Sources :