The rate of convergence for iterated function systems
Studia Mathematica, Tome 205 (2011) no. 3, pp. 201-214

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Iterated function systems with place-dependent probabilities are considered. It is shown that the rate of convergence of transition probabilities to a unique invariant measure is geometric.
DOI : 10.4064/sm205-3-1
Keywords: iterated function systems place dependent probabilities considered shown rate convergence transition probabilities unique invariant measure geometric

Maciej Ślęczka 1

1 Institute of Mathematics Silesian University Bankowa 14 40-007 Katowice, Poland
@article{10_4064_sm205_3_1,
     author = {Maciej \'Sl\k{e}czka},
     title = {The rate of convergence for iterated function systems},
     journal = {Studia Mathematica},
     pages = {201--214},
     publisher = {mathdoc},
     volume = {205},
     number = {3},
     year = {2011},
     doi = {10.4064/sm205-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm205-3-1/}
}
TY  - JOUR
AU  - Maciej Ślęczka
TI  - The rate of convergence for iterated function systems
JO  - Studia Mathematica
PY  - 2011
SP  - 201
EP  - 214
VL  - 205
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm205-3-1/
DO  - 10.4064/sm205-3-1
LA  - en
ID  - 10_4064_sm205_3_1
ER  - 
%0 Journal Article
%A Maciej Ślęczka
%T The rate of convergence for iterated function systems
%J Studia Mathematica
%D 2011
%P 201-214
%V 205
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm205-3-1/
%R 10.4064/sm205-3-1
%G en
%F 10_4064_sm205_3_1
Maciej Ślęczka. The rate of convergence for iterated function systems. Studia Mathematica, Tome 205 (2011) no. 3, pp. 201-214. doi: 10.4064/sm205-3-1

Cité par Sources :