Almost everywhere convergence of the inverse Jacobi transform and endpoint results for a disc multiplier
Studia Mathematica, Tome 205 (2011) no. 2, pp. 101-137 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

The maximal operator $S_*$ for the spherical summation operator (or disc multiplier) $S_R$ associated with the Jacobi transform through the defining relation $\widehat{S_Rf}(\lambda) =1_{\{\vert\lambda\vert\leq R\}}\widehat{f}(t)$ for a function $f$ on $\mathbb R$ is shown to be bounded from $L^p(\mathbb R_+,d\mu)$ into $L^p(\mathbb R,d\mu)+L^2(\mathbb R,d\mu)$ for $\frac{4\alpha+4}{2\alpha+3} p\leq 2$. Moreover $S_*$ is bounded from $L^{p_0,1}(\mathbb R_+,d\mu)$ into $L^{p_0,\infty}(\mathbb R,d\mu)+L^2(\mathbb R,d\mu)$. In particular $\{S_Rf(t)\}_{R>0}$ converges almost everywhere towards $f$, for $f\in L^p(\mathbb R_+,d\mu)$, whenever $\frac{4\alpha+4}{2\alpha+3} p\leq 2$.
DOI : 10.4064/sm205-2-1
Keywords: maximal operator * spherical summation operator disc multiplier associated jacobi transform through defining relation widehat lambda vert lambda vert leq widehat function mathbb shown bounded mathbb mathbb mathbb frac alpha alpha leq moreover * bounded mathbb infty mathbb mathbb particular converges almost everywhere towards mathbb whenever frac alpha alpha leq

Troels Roussau Johansen  1

1 Mathematisches Seminar Christian-Albrechts Universität zu Kiel Ludewig-Meyn-Strasse 4 D-24098 Kiel, Germany
@article{10_4064_sm205_2_1,
     author = {Troels Roussau Johansen},
     title = {Almost everywhere convergence of the inverse {Jacobi} transform and endpoint results for a disc multiplier},
     journal = {Studia Mathematica},
     pages = {101--137},
     year = {2011},
     volume = {205},
     number = {2},
     doi = {10.4064/sm205-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm205-2-1/}
}
TY  - JOUR
AU  - Troels Roussau Johansen
TI  - Almost everywhere convergence of the inverse Jacobi transform and endpoint results for a disc multiplier
JO  - Studia Mathematica
PY  - 2011
SP  - 101
EP  - 137
VL  - 205
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm205-2-1/
DO  - 10.4064/sm205-2-1
LA  - en
ID  - 10_4064_sm205_2_1
ER  - 
%0 Journal Article
%A Troels Roussau Johansen
%T Almost everywhere convergence of the inverse Jacobi transform and endpoint results for a disc multiplier
%J Studia Mathematica
%D 2011
%P 101-137
%V 205
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm205-2-1/
%R 10.4064/sm205-2-1
%G en
%F 10_4064_sm205_2_1
Troels Roussau Johansen. Almost everywhere convergence of the inverse Jacobi transform and endpoint results for a disc multiplier. Studia Mathematica, Tome 205 (2011) no. 2, pp. 101-137. doi: 10.4064/sm205-2-1

Cité par Sources :