Rademacher functions in BMO
Studia Mathematica, Tome 205 (2011) no. 1, pp. 83-100
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The Rademacher sums are investigated in the
$BMO$ space on $[0, 1]$. They span an uncomplemented subspace,
in contrast to the dyadic $BMO_d$ space on $[0, 1]$, where they span a
complemented subspace isomorphic to $l_2$. Moreover, structural properties of
infinite-dimensional closed subspaces of the span of the Rademacher
functions in $BMO$ are studied and an analog of
the Kadec–Pełczyński type alternative with $l_2$ and $c_0$ spaces
is proved.
Keywords:
rademacher sums investigated bmo space span uncomplemented subspace contrast dyadic bmo space where span complemented subspace isomorphic moreover structural properties infinite dimensional closed subspaces span rademacher functions bmo studied analog kadec czy ski type alternative spaces proved
Affiliations des auteurs :
Sergey V. Astashkin 1 ; Mikhail Leibov 2 ; Lech Maligranda 3
@article{10_4064_sm205_1_6,
author = {Sergey V. Astashkin and Mikhail Leibov and Lech Maligranda},
title = {Rademacher functions in {BMO}},
journal = {Studia Mathematica},
pages = {83--100},
publisher = {mathdoc},
volume = {205},
number = {1},
year = {2011},
doi = {10.4064/sm205-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm205-1-6/}
}
TY - JOUR AU - Sergey V. Astashkin AU - Mikhail Leibov AU - Lech Maligranda TI - Rademacher functions in BMO JO - Studia Mathematica PY - 2011 SP - 83 EP - 100 VL - 205 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm205-1-6/ DO - 10.4064/sm205-1-6 LA - en ID - 10_4064_sm205_1_6 ER -
Sergey V. Astashkin; Mikhail Leibov; Lech Maligranda. Rademacher functions in BMO. Studia Mathematica, Tome 205 (2011) no. 1, pp. 83-100. doi: 10.4064/sm205-1-6
Cité par Sources :