On partial isometries in $C^*$-algebras
Studia Mathematica, Tome 205 (2011) no. 1, pp. 71-82

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study similarity to partial isometries in $C^*$-algebras as well as their relationship with generalized inverses. Most of the results extend some recent results regarding partial isometries on Hilbert spaces. Moreover, we describe partial isometries by means of interpolation polynomials.
DOI : 10.4064/sm205-1-5
Keywords: study similarity partial isometries * algebras their relationship generalized inverses results extend recent results regarding partial isometries hilbert spaces moreover describe partial isometries means interpolation polynomials

M. Laura Arias 1 ; Mostafa Mbekhta 2

1 Instituto Argentino de Matemática “Alberto P. Calderón” Saavedra 15, Piso 3 (1083) Buenos Aires, Argentina
2 UFR de Mathématiques Université Lille I 59655 Villeneuve d'Ascq Cedex, France
@article{10_4064_sm205_1_5,
     author = {M. Laura Arias and Mostafa Mbekhta},
     title = {On partial isometries in $C^*$-algebras},
     journal = {Studia Mathematica},
     pages = {71--82},
     publisher = {mathdoc},
     volume = {205},
     number = {1},
     year = {2011},
     doi = {10.4064/sm205-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm205-1-5/}
}
TY  - JOUR
AU  - M. Laura Arias
AU  - Mostafa Mbekhta
TI  - On partial isometries in $C^*$-algebras
JO  - Studia Mathematica
PY  - 2011
SP  - 71
EP  - 82
VL  - 205
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm205-1-5/
DO  - 10.4064/sm205-1-5
LA  - en
ID  - 10_4064_sm205_1_5
ER  - 
%0 Journal Article
%A M. Laura Arias
%A Mostafa Mbekhta
%T On partial isometries in $C^*$-algebras
%J Studia Mathematica
%D 2011
%P 71-82
%V 205
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm205-1-5/
%R 10.4064/sm205-1-5
%G en
%F 10_4064_sm205_1_5
M. Laura Arias; Mostafa Mbekhta. On partial isometries in $C^*$-algebras. Studia Mathematica, Tome 205 (2011) no. 1, pp. 71-82. doi: 10.4064/sm205-1-5

Cité par Sources :