Topological classification of
closed convex sets in Fréchet spaces
Studia Mathematica, Tome 205 (2011) no. 1, pp. 1-11
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that each non-separable completely metrizable convex subset of a Fréchet space is homeomorphic to a Hilbert space. This resolves a more than 30 years old problem of infinite-dimensional topology. Combined with the topological classification of separable convex sets due to Klee, Dobrowolski and Toruńczyk, this result implies that each closed convex subset of a Fréchet space is homeomorphic to $[0,1]^n\times [0,1)^m\times \ell _2(\kappa )$ for some cardinals $0\le n\le \omega $, $0\le m\le 1$ and $\kappa \ge 0$.
Mots-clés :
prove each non separable completely metrizable convex subset chet space homeomorphic hilbert space resolves years old problem infinite dimensional topology combined topological classification separable convex sets due klee dobrowolski toru czyk result implies each closed convex subset chet space homeomorphic times times ell kappa cardinals omega kappa
Affiliations des auteurs :
Taras Banakh 1 ; Robert Cauty 2
@article{10_4064_sm205_1_1,
author = {Taras Banakh and Robert Cauty},
title = {Topological classification of
closed convex sets in {Fr\'echet} spaces},
journal = {Studia Mathematica},
pages = {1--11},
publisher = {mathdoc},
volume = {205},
number = {1},
year = {2011},
doi = {10.4064/sm205-1-1},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm205-1-1/}
}
TY - JOUR AU - Taras Banakh AU - Robert Cauty TI - Topological classification of closed convex sets in Fréchet spaces JO - Studia Mathematica PY - 2011 SP - 1 EP - 11 VL - 205 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm205-1-1/ DO - 10.4064/sm205-1-1 LA - fr ID - 10_4064_sm205_1_1 ER -
Taras Banakh; Robert Cauty. Topological classification of closed convex sets in Fréchet spaces. Studia Mathematica, Tome 205 (2011) no. 1, pp. 1-11. doi: 10.4064/sm205-1-1
Cité par Sources :