On a binary relation between normal operators
Studia Mathematica, Tome 204 (2011) no. 3, pp. 247-264
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The main goal of this paper is to clarify the
antisymmetric nature of a binary relation $\ll$ which
is defined for normal operators $A$ and $B$ by: $A \ll
B$ if there exists an operator $T$ such that
$E_A(\varDelta) \le T^* E_B(\varDelta) T$ for all
Borel subset $\varDelta$ of the complex plane $\mathbb C$,
where $E_A$ and $E_B$ are spectral measures of $A$ and
$B$, respectively (the operators $A$ and $B$ are
allowed to act in different complex Hilbert spaces).
It is proved that if $A \ll B$ and $B \ll A$, then $A$
and $B$ are unitarily equivalent, which shows that the
relation $\ll$ is a partial order modulo unitary equivalence.
Keywords:
main paper clarify antisymmetric nature binary relation which defined normal operators there exists operator vardelta * vardelta borel subset vardelta complex plane mathbb where spectral measures respectively operators allowed act different complex hilbert spaces proved unitarily equivalent which shows relation partial order modulo unitary equivalence
Affiliations des auteurs :
Takateru Okayasu 1 ; Jan Stochel 2 ; Yasunori Ueda 3
@article{10_4064_sm204_3_4,
author = {Takateru Okayasu and Jan Stochel and Yasunori Ueda},
title = {On a binary relation between normal operators},
journal = {Studia Mathematica},
pages = {247--264},
publisher = {mathdoc},
volume = {204},
number = {3},
year = {2011},
doi = {10.4064/sm204-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm204-3-4/}
}
TY - JOUR AU - Takateru Okayasu AU - Jan Stochel AU - Yasunori Ueda TI - On a binary relation between normal operators JO - Studia Mathematica PY - 2011 SP - 247 EP - 264 VL - 204 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm204-3-4/ DO - 10.4064/sm204-3-4 LA - en ID - 10_4064_sm204_3_4 ER -
Takateru Okayasu; Jan Stochel; Yasunori Ueda. On a binary relation between normal operators. Studia Mathematica, Tome 204 (2011) no. 3, pp. 247-264. doi: 10.4064/sm204-3-4
Cité par Sources :