Ergodicity of $\mathbb Z^2$ extensions of irrational rotations
Studia Mathematica, Tome 204 (2011) no. 3, pp. 235-246

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\mathbb T=[0,1)$ be the additive group of real numbers modulo $1$, $\alpha \in \mathbb T$ be an irrational number and $t \in \mathbb T$. We study ergodicity of skew product extensions $T \colon \mathbb T\times \mathbb Z^2 \to \mathbb T\times \mathbb Z^2$, $T(x,s_1,s_2)=(x+\alpha,s_1+2\chi_{[0,{1}/{2})}(x)-1, s_2+2\chi_{[0,{1}/{2})}(x+t)-1)$.
DOI : 10.4064/sm204-3-3
Keywords: mathbb additive group real numbers modulo alpha mathbb irrational number mathbb study ergodicity skew product extensions colon mathbb times mathbb mathbb times mathbb alpha chi chi

Yuqing Zhang 1

1 ESI Boltzmanngasse 9 A-1090 Wien, Austria
@article{10_4064_sm204_3_3,
     author = {Yuqing Zhang},
     title = {Ergodicity of $\mathbb Z^2$ extensions of irrational rotations},
     journal = {Studia Mathematica},
     pages = {235--246},
     publisher = {mathdoc},
     volume = {204},
     number = {3},
     year = {2011},
     doi = {10.4064/sm204-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm204-3-3/}
}
TY  - JOUR
AU  - Yuqing Zhang
TI  - Ergodicity of $\mathbb Z^2$ extensions of irrational rotations
JO  - Studia Mathematica
PY  - 2011
SP  - 235
EP  - 246
VL  - 204
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm204-3-3/
DO  - 10.4064/sm204-3-3
LA  - en
ID  - 10_4064_sm204_3_3
ER  - 
%0 Journal Article
%A Yuqing Zhang
%T Ergodicity of $\mathbb Z^2$ extensions of irrational rotations
%J Studia Mathematica
%D 2011
%P 235-246
%V 204
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm204-3-3/
%R 10.4064/sm204-3-3
%G en
%F 10_4064_sm204_3_3
Yuqing Zhang. Ergodicity of $\mathbb Z^2$ extensions of irrational rotations. Studia Mathematica, Tome 204 (2011) no. 3, pp. 235-246. doi: 10.4064/sm204-3-3

Cité par Sources :