Ergodicity of $\mathbb Z^2$ extensions of irrational rotations
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 204 (2011) no. 3, pp. 235-246
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let $\mathbb T=[0,1)$ be the additive group of real numbers
 modulo $1$, $\alpha \in \mathbb T$ be an irrational number and
$t \in \mathbb T$.
We study ergodicity of skew product extensions 
$T \colon \mathbb T\times \mathbb Z^2 \to  \mathbb T\times \mathbb Z^2$,  
$T(x,s_1,s_2)=(x+\alpha,s_1+2\chi_{[0,{1}/{2})}(x)-1,
s_2+2\chi_{[0,{1}/{2})}(x+t)-1)$.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
mathbb additive group real numbers modulo alpha mathbb irrational number mathbb study ergodicity skew product extensions colon mathbb times mathbb mathbb times mathbb alpha chi chi
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Yuqing Zhang 1
@article{10_4064_sm204_3_3,
     author = {Yuqing Zhang},
     title = {Ergodicity of $\mathbb Z^2$ extensions of irrational rotations},
     journal = {Studia Mathematica},
     pages = {235--246},
     publisher = {mathdoc},
     volume = {204},
     number = {3},
     year = {2011},
     doi = {10.4064/sm204-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm204-3-3/}
}
                      
                      
                    Yuqing Zhang. Ergodicity of $\mathbb Z^2$ extensions of irrational rotations. Studia Mathematica, Tome 204 (2011) no. 3, pp. 235-246. doi: 10.4064/sm204-3-3
Cité par Sources :